A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.
1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2
Examples
The array T(n,k) starts in row n=2 with columns k>=0 as: 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 ... A000034; 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3 ... A010684; 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4 ... A010685; 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5 ... A010686; 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6 ... A010687; 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7 ... A010688; 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8 ... A010689; 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9 ... A010690; 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691. Antidiagonal triangle begins as: 1; 1, 2; 1, 3, 1; 1, 4, 1, 2; 1, 5, 1, 3, 1; 1, 6, 1, 4, 1, 2; 1, 7, 1, 5, 1, 3, 1; 1, 8, 1, 6, 1, 4, 1, 2; 1, 9, 1, 7, 1, 5, 1, 3, 1; 1, 10, 1, 8, 1, 6, 1, 4, 1, 2; 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1; 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2; 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1; 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2;
Links
- G. C. Greubel, Antidiagonals n = 0..50 of the array, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k); Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
-
Sage
flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021
Formula
From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)
Comments