cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173307 a(n) = 13*n*(n+1).

Original entry on oeis.org

0, 26, 78, 156, 260, 390, 546, 728, 936, 1170, 1430, 1716, 2028, 2366, 2730, 3120, 3536, 3978, 4446, 4940, 5460, 6006, 6578, 7176, 7800, 8450, 9126, 9828, 10556, 11310, 12090, 12896, 13728, 14586, 15470, 16380, 17316, 18278, 19266, 20280, 21320, 22386, 23478, 24596
Offset: 0

Views

Author

Vincenzo Librandi, Feb 16 2010

Keywords

Crossrefs

Programs

  • Magma
    [13*n*(n+1): n in [0..40]]; // Vincenzo Librandi, Sep 28 2013
    
  • Magma
    I:=[0, 26, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 28 2013
    
  • Mathematica
    Table[13 n (n + 1), {n, 0, 50}] (* or *) CoefficientList[Series[26 x/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 28 2013 *)
    LinearRecurrence[{3,-3,1},{0,26,78},50] (* Harvey P. Dale, Apr 08 2014 *)
  • PARI
    a(n)=13*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 26*A000217(n).
From Vincenzo Librandi, Sep 28 2013: (Start)
G.f.: 26*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/Pi)*cos(sqrt(17/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/Pi)*cos(3*Pi/(2*sqrt(13))). (End)
From Elmo R. Oliveira, Dec 14 2024: (Start)
E.g.f.: 13*exp(x)*x*(2 + x).
a(n) = 13*A002378(n) = 2*A152741(n). (End)

Extensions

Incorrect formulas and examples deleted by R. J. Mathar, Jan 04 2011