A173331 Second of two intermediate sequences for integral solution of A002144(n)=x^2+y^2.
2, 2, 13, 2, 31, 4, 2, 55, 8, 81, 4, 91, 99, 105, 133, 10, 6, 2, 10, 181, 183, 227, 8, 237, 16, 10, 14, 265, 2, 301, 303, 16, 18, 8, 355, 379, 6, 381, 389, 14, 421, 429, 453, 451, 487, 20, 531, 543, 20, 24, 585, 24, 18, 16, 637, 631, 655, 12, 651, 675, 22, 731, 26, 741, 757
Offset: 1
Keywords
Examples
n=7: A002144(7) = 53 = 4*13 + 1, a(7) = A173330(7) * 26! mod 53 = 7*403291461126605635584000000 mod 53 = 2, A002973(7) = MIN(2, 53 - 2) / 2 = 1; n=8: A002144(8) = 61 = 4*15 + 1, a(8) = A173330(8) * 30! mod 61 = 5*265252859812191058636308480000000 mod 61 = 55, A002973(8) = MIN(55, 61 - 55) / 2 = 3.
References
- H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.
Formula
a(n) = ((2k)! / 2(k!))^2 mod p, where p = 4*k+1 = A002144(n).
Comments