A173380 Number of n-step walks on square lattice (no points repeated, no adjacent points unless consecutive in path).
1, 4, 12, 28, 68, 164, 396, 940, 2244, 5324, 12668, 29940, 71012, 167468, 396172, 932628, 2201636, 5175268, 12195660, 28632804, 67374292, 158017740, 371354012, 870197548, 2042809996, 4783292988, 11218303476, 26250429540, 61514573604, 143857013260, 336865512780, 787374453524, 1842579846180
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Scott R. Shannon, Table of n, a(n) for n = 0..35
- D. Bennett-Wood, I. G. Enting, D. S. Gaunt, A. J. Guttmann, J. L. Leask, A. L. Owczarek, and S. G. Whittington, Exact enumeration study of free energies of interacting polygons and walks in two dimensions, J. Phys. A: Math. Gen. 31 (1998), 4725-4741. [See Table B1 (pp. 4738-4739), where the numbers must be multiplied by 4. - _Petros Hadjicostas_, Jan 05 2019]
- M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.
- A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- Sequence Fans Mailing list, discussion of this sequence, November 2010
Crossrefs
Programs
-
Mathematica
A038746 = Cases[Import["https://oeis.org/A038746/b038746.txt", "Table"], {, }][[All, 2]]; a[n_] := If[n == 0, 1, 8 A038746[[n]] + 4]; a /@ Range[0, 32] (* Jean-François Alcover, Feb 24 2020 *)
Formula
a(n) = 4 + 8*A038746(n) for n>=1.
Extensions
a(23)-a(32) from Bert Dobbelaere, Jan 02 2019
a(33)-a(35) from Scott R. Shannon, Aug 25 2020
Comments