cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A002932 Erroneous version of A173380.

Original entry on oeis.org

1, 4, 12, 28, 68, 164, 396, 940, 2244, 5324, 12668, 29940, 71012, 167468, 396204
Offset: 0

Views

Author

Keywords

References

  • M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.

A174319 Number of n-step walks on cubic lattice (no points repeated, no adjacent points unless consecutive in path).

Original entry on oeis.org

1, 6, 30, 126, 534, 2214, 9246, 38142, 157974, 649086, 2675022, 10966470, 45054630, 184400910, 755930958, 3089851782, 12645783414, 51635728518, 211059485310, 861083848998, 3516072837894, 14334995983614, 58485689950254
Offset: 0

Views

Author

Joseph Myers, Nov 27 2010

Keywords

Comments

Fisher and Hiley give 2674926 as their last term instead of 2675022 (see A002934). Douglas McNeil confirms the correction on the seqfan list.
In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=0 (and d=3). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (Let n >= 1. For d=2, we have C(n,0) = A173380(n); for d=4, we have C(n,0) = A034006(n); and for d=5, we have C(n,0) = A038726(n).) - Petros Hadjicostas, Jan 03 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = 6 + 24*A038746(n) + 48*A038748(n) for n >= 1. (It follows from Eq. (5), p. 1090, in Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 01 2019

Extensions

a(16)-a(22) from Bert Dobbelaere, Jan 03 2019

A337353 Number of n-step self-avoiding walks on a square lattice where no step can be in the same direction as the previous step.

Original entry on oeis.org

1, 4, 8, 16, 24, 40, 64, 104, 168, 272, 440, 712, 1128, 1808, 2896, 4640, 7368, 11744, 18752, 29920, 47376, 75304, 119824, 190632, 301488, 478160, 759056, 1204848, 1903576, 3014272, 4776504, 7568688, 11947976, 18895760, 29901592, 47317080, 74643504, 117930520, 186413728, 294666160
Offset: 0

Views

Author

Scott R. Shannon, Aug 24 2020

Keywords

Examples

			a(5) = 40. The five possible 5-step walks in the first quadrant are:
.
+--+   +--+         +--+        +--+
|         |            |        |
+--+      +--+      +--+     +--+       +--+
   |         |      |        |          |  |
x--+      x--+   x--+     x--+       x--+  +--+
.
Each of these can be taken in eight ways on the square lattice, giving 40 in total.
		

Crossrefs

Formula

a(n) = 4*A336662(n).

A034006 Number of n-step self-avoiding walks on the 4-dimensional hypercubic lattice with no non-contiguous adjacencies.

Original entry on oeis.org

1, 8, 56, 344, 2120, 12872, 78392, 472952, 2861768, 17223224, 103835096, 623927912, 3753164744, 22526613176, 135308002424, 811435356200, 4868892591752
Offset: 0

Views

Author

Keywords

Comments

In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=0 (and d=4). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C(n,0) = A173380(n), while for d=3, we have C(n,0) = A174319(n).) - Petros Hadjicostas, Jan 02 2019

Crossrefs

Formula

a(n) = 8 + 48*A038746(n) + 192*A038748(n) + 384*A323037(n). (It can be proved using Eq. (5) in Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 02 2019

Extensions

Name edited by Petros Hadjicostas, Jan 01 2019
Title clarified, a(0), and a(12)-a(16) from Sean A. Irvine, Jul 29 2020

A038746 Coefficients arising in the enumeration of configurations of linear chains.

Original entry on oeis.org

0, 1, 3, 8, 20, 49, 117, 280, 665, 1583, 3742, 8876, 20933, 49521, 116578, 275204, 646908, 1524457, 3579100, 8421786, 19752217, 46419251, 108774693, 255351249, 597911623, 1402287934, 3281303692, 7689321700, 17982126657, 42108189097, 98421806690, 230322480772
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2000

Keywords

Comments

This counts non-self-intersecting paths of length n on the square lattice, start and end points distinguished, straight line paths not counted, rotations and reflections of a path not counted as distinct from that path.
From Petros Hadjicostas, Jan 01 2019: (Start)
Nemirovsky et al. (1992), for a d-dimensional hypercubic lattice, define C_{n,m} to be "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." For d=2 (square lattice) and m=0 (no neighbor contacts), we have C(n, m=0) = A173380(n). These values (from n=1 to n=11) are listed in Table I (p. 1088) in the paper.
According to Eq. (5), p. 1090, in the above paper, for a general d, the partition number C_{n,m} satisfies C_{n,m} = Sum_{l=1..n} 2^l*l!*Bin(d,l)*p_{n,m}^{(l)}, where the coefficients p_{n,m}^{(l)} (l=1,2,...) are independent of d. For d=2 (square lattice), this becomes C_{n,m} = Sum_{l=1..n} 2^l*l!*Bin(2,l)*p_{n,m}^{(l)}.
According to Eq. (7a) and (7b), p. 1093, in the paper, p_{n,0}^{(1)} = 1 = p_{n,0}^{(n)}, p_{n,m}^{(1)} = 0 for m >= 1, and p_{n,m}^{(l)} = 0 for m >= 1 and n-m+1 <= l <= n.
Now, assume d=2. Since p_{n,0}^{(1)} = 1 for n >= 1, we have C_{1,0} = 2^1*1!*Bin(2,1)*1 = 4, while C_{n,0} = 4 + 2^2*2!*Bin(2,2)*p_{n,0}^{(2)} = 4 + 8*p_{n,0}^{(2)} for n >= 2. The partition numbers p_{n,0}^{(2)} appear in Table II, p. 1093, in the paper. For the current sequence, we have a(n) = p_{n,0}^{(2)} (with a(1) = p_{1,0}^{(2)} = 0 to make the formula A173380(n) = C_{n,0} = 4 + 8*p_{n,0}^{(2)} = 4 + 8*a(n) valid even for n=1).
Apparently, some of the numbers C_{n,m} (for d=2 and d=3) are calculated in Fisher and Hiley (1961); see Table II, p. 1261 (square and cubic). For d=2, they calculate C(n,0) for 1 <= n < 14, while for d=3, they calculate C(n,0) for 1 <= n <= 10. It seems, however, that there are some possible typos there. The typos (for both d=2 and d=3) become apparent if one compares their results with the numbers in Table I (p. 1088) in Nemirovsky et al. (1992). See the comments for the sequence A173380 for more details.
(End)
No adjacent points allowed unless consecutive in path - Bert Dobbelaere, Jan 02 2019

Crossrefs

Extensions

Initial 0 added to match offset in reference, further explanation and terms a(12) = 8876 to a(22) = 46419251 by Joseph Myers, Nov 22 2010
a(23)-a(32) from Bert Dobbelaere, Jan 02 2019

A174313 Number of n-step walks on hexagonal lattice (no points repeated, no adjacent points unless consecutive in path).

Original entry on oeis.org

1, 6, 18, 54, 162, 474, 1398, 4074, 11898, 34554, 100302, 290322, 839382, 2422626, 6984342, 20110806, 57851358, 166258242, 477419658, 1369878582, 3927963138, 11255743434, 32235116502, 92267490414, 263968559874, 754837708494, 2157584748150, 6164626128066, 17606866229010
Offset: 0

Views

Author

Joseph Myers, Nov 27 2010

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Fisher and Hiley give 290334 and 839466 as their last terms instead of 290322 and 839382 (see A002933). Douglas McNeil confirms the correction on the seqfan list Nov 27 2010.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A173380 for square lattice equivalent.

Extensions

a(19)-a(28) from Bert Dobbelaere, Jan 02 2019

A038726 The number of n-step self-avoiding walks in a 5-dimensional hypercubic lattice with no non-contiguous adjacencies.

Original entry on oeis.org

1, 10, 90, 730, 5930, 47690, 384090, 3075610, 24663210, 197117210, 1576845050, 12589411530, 100567197770, 802350892730, 6403639865530
Offset: 0

Views

Author

N. J. A. Sloane, May 02 2000

Keywords

Comments

In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=0 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C(n,0) = A173380(n); for d=3, we have C(n,0) = A174319(n); and for d=4, we have C(n,0) = A034006(n).) - Petros Hadjicostas, Jan 02 2019

Crossrefs

Formula

a(n) = 10 + 80*A038746(n) + 480*A038748(n) + 1920*A323037(n) + 3840*A323063(n). (It can be proved using Eq. (5), p. 1090, in the paper by Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 03 2019

Extensions

Name edited by Petros Hadjicostas, Jan 02 2019
Title clarified, a(0), and a(12)-a(14) from Sean A. Irvine, Jul 29 2020

A336662 Number of n-step self-avoiding walks on the Manhattan lattice with no non-contiguous adjacencies.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 282, 452, 724, 1160, 1842, 2936, 4688, 7480, 11844, 18826, 29956, 47658, 75372, 119540, 189764, 301212, 475894, 753568, 1194126, 1892172, 2986994, 4723940, 7475398, 11829270, 18660876, 29482630, 46603432, 73666540
Offset: 0

Views

Author

Sean A. Irvine, Jul 28 2020

Keywords

Comments

Adjacencies are forbidden regardless of the direction of the Manhattan lattice at the point in question.

Crossrefs

Cf. A117633 (without adjacency requirements), A173380 (square lattice).

A038729 Configurations of linear chains in a 6-dimensional hypercubic lattice.

Original entry on oeis.org

12, 132, 1332, 13452, 134892, 1353732, 13536612, 135457932, 1352852292, 13517235732, 134908128732, 1346796414252, 13435850843172
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2000

Keywords

Comments

In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=0 (and d=6). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C(n,0) = A173380(n); for d=3, we have C(n,0) = A174319(n); for d=4, we have C(n,0) = A034006(n); and for d=5, we have C(n,0) = A038726(n).) - Petros Hadjicostas, Jan 03 2019

Crossrefs

Extensions

Terms a(10) and a(11) were copied from Table 1 (p. 1090) in the paper by Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 03 2019
Name edited by Petros Hadjicostas, Jan 03 2019
a(12)-a(13) from Sean A. Irvine, Feb 01 2021

A336492 Total number of neighbor contacts for n-step self-avoiding walks on a 2D square lattice.

Original entry on oeis.org

0, 0, 8, 32, 152, 512, 1880, 5920, 19464, 59168, 183776, 545392, 1638400, 4778000, 14043224, 40422544, 116977176, 333346928, 953538440, 2695689520, 7642091352, 21464794032, 60417010152, 168787016352, 472315518008, 1313548558528, 3657850909680, 10133559518800
Offset: 1

Views

Author

Scott R. Shannon, Jul 23 2020

Keywords

Comments

This sequence gives the total number of neighbor contacts for all n-step self avoiding walks on a 2D square lattices. A neighbor contact is when the walk comes within 1 unit distance of a previously visited point, excluding the previous adjacent point.

Examples

			a(1) = a(2) = 0 as a 1 and 2 step walk cannot approach a previous step.
a(3) = 8. The single walk where one interaction occurs, which can be taken in eight ways on a 2D square lattice, is:
.
   +---+
       |
   X---+
.
Therefore, the total number of interactions is 1*1*8 = 8.
a(4) = 32. The four walks where one interaction occurs, each of which can be taken in eight ways on a 2D square lattice, are:
.
  +---+---+   +           +---+       +---+
          |   |               |       |   |
      X---+   +---+   X---+---+   X---+   +
                  |
              X---+
.
Therefore, the total number of interactions is 4*1*8 = 32.
a(5) = 152. Considering only walks which start with one or more steps to the right followed by an upward step there are thirty-five different walks. Eleven of these have one neighbor contact (hence A033155(5) = 11*8 = 88) while four have two contacts. These are:
.
  +---+---+   +---+---+   +---+   +---+
  |       |           |   |       |   |
  +   X---+   X---+---+   +---+   +   +
                              |       |
                          X---+   X---+
.
Therefore, the total number of contacts is (11*1 + 4*2)*8 = 152.
		

Crossrefs

Cf. A033155 (total number of n-step walks containing one neighbor contact), A038747, A047057, A173380, A174319.
Showing 1-10 of 17 results. Next