cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180491 Product of remainders of n mod k, for k = 2,3,4,...,n-1.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 6, 0, 0, 0, 720, 0, 2160, 0, 0, 0, 2419200, 0, 65318400, 0, 0, 0, 754427520000, 0, 0, 0, 0, 0, 32953394073600000, 0, 311409573995520000, 0, 0, 0, 0, 0, 37269497815783833600000, 0, 0, 0, 7890485108998805913600000000, 0
Offset: 1

Views

Author

Carl R. White, Sep 08 2010

Keywords

Comments

a(n) is zero where n is composite and is trivially less than or equal to n! when n is prime or 1.
a(n)=0 iff n is composite. See A180492. - Robert G. Wilson v, Sep 09 2010

Examples

			a(7) = (7 mod 2) * (7 mod 3) * (7 mod 4) * (7 mod 5) * (7 mod 6) = 1 * 1 * 3 * 2 * 1 = 6.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if n=1 then 1; elif isprime(n)=true then mul(n mod i, i=2..n-1); else 0; fi: end: seq(a(n), n=1..60); # Ridouane Oudra, Nov 01 2024
  • Mathematica
    f[n_] := Times @@ Mod[n, Range[2, n - 1]]; Array[f, 42] (* Robert G. Wilson v, Sep 09 2010 *)

Formula

a(n) = A080339(n)*A173392(n). - Ridouane Oudra, Nov 01 2024

A180492 Product of remainders of prime(n) mod k, for k = 2,3,4,...,prime(n)-1.

Original entry on oeis.org

1, 1, 2, 6, 720, 2160, 2419200, 65318400, 754427520000, 32953394073600000, 311409573995520000, 37269497815783833600000, 7890485108998805913600000000, 1096106738916569123487744000000, 4067286739206415827555188736000000000, 7924734685010508814047938347008000000000000
Offset: 1

Views

Author

Carl R. White, Sep 08 2010

Keywords

Comments

Nonzero entries in A180491. Note that this sequence, while increasing in general, is not strictly increasing.
a(n) is divisible by (n-1)!. - Robert G. Wilson v, Sep 09 2010

Examples

			Since prime(4) = 7, a(4) = (7 mod 2) * (7 mod 3) * (7 mod 4) * (7 mod 5) * (7 mod 6) = 1 * 1 * 3 * 2 * 1 = 6.
		

Crossrefs

Programs

  • Maple
    a:= n-> (p-> mul(irem(p, k), k=2..p-1))(ithprime(n)):
    seq(a(n), n=1..17);  # Alois P. Heinz, Jul 16 2022
  • Mathematica
    f[n_]:=Times@@(Mod[n,# ]&/@ Range[2,n-1]); Table[f[Prime[i]],{i,20}] (* Harvey P. Dale, Sep 18 2010 *)
    f[n_] := Times @@ Mod[n, Range[2, n - 1]]; Table[ f@ Prime@ n, {n, 10}] (* Robert G. Wilson v, Sep 09 2010 *)

Formula

a(n) = A173392(A000040(n)) = A180491(A000040(n)). - Ridouane Oudra, Nov 01 2024
Showing 1-2 of 2 results.