A173403 Inverse binomial transform of A002416.
1, 1, 13, 469, 63577, 33231721, 68519123173, 562469619451069, 18442242396353040817, 2417685638793025070212561, 1267626422541873052658376446653, 2658442047546208031914776455678477989, 22300713297142388711251601783864453690641417
Offset: 0
Keywords
References
- E. A. Bender and S. G. Williamson, Foundations of Combinatorics with Applications, Dover, 2005, exercise 4.1.6.
Links
- Brian Drake, Table of n, a(n) for n = 0..50
Programs
-
Maple
N:=8: seq( sum(binomial(n,i)*2^((n-i)^2)*(-1)^(i), i=0..n), n=0..N);
-
Mathematica
Table[Sum[(-1)^k Binomial[n,k] 2^(n-k)^2,{k,0,n}],{n,0,20}] (* Geoffrey Critzer, Oct 02 2012 *)
Formula
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*2^((n-k)^2).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Oct 30 2017
Comments