cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173427 Decimal value a(n) of the binary number b(n) obtained by starting from 1, sequentially concatenating all binary numbers up to n and then sequentially concatenating all binary numbers from n-1 down to 1.

Original entry on oeis.org

1, 13, 221, 7069, 451997, 28931485, 1851651485, 237010810269, 60674754606493, 15532737233548701, 3976380732916495773, 1017953467644930815389, 260596087717395474544029, 66712598455657932715586973, 17078425204648505835166758301, 8744153704780027821877938484637
Offset: 1

Views

Author

Umut Uludag, Feb 18 2010

Keywords

Comments

a(2) = 13 and a(4) = 7069 are primes. What other terms are primes? - N. J. A. Sloane, Feb 18 2023
a(38) is the next prime. - Michael S. Branicky, Feb 18 2023

Examples

			a(1)=binary_to_decimal(1)=1, a(2)=binary_to_decimal(1101)=13, a(3)=binary_to_decimal(11011101)=221, a(4)=binary_to_decimal(1101110011101)=7069 etc.
		

Crossrefs

Cf. A359149 (binary representations).

Programs

  • Maple
    a:= n-> Bits[Join](map(x-> Bits[Split](x)[], [$1..n, n-i$i=1..n-1])):
    seq(a(n), n=1..16);  # Alois P. Heinz, Feb 18 2023
  • PARI
    a(n)=sum(i=1,#n=concat(vector(n*2-1,k,binary(min(k, n*2-k)))),n[i]<<(#n-i))
    
  • PARI
    A173427(n)={my(s=0,s1=0,t=0,b=0);for(k=1,n-1,s1+=k<>b&&b++;s=s<>b&&b++;(s<M. F. Hasler, Aug 06 2015
    
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        sl, sr, sk = "", "", "1"
        for k in count(1):
            sk = bin(k)[2:]
            sl += sk
            yield int(sl + sr, 2)
            sr = sk + sr
    print(list(islice(agen(), 16))) # Michael S. Branicky, Feb 18 2023

Formula

a(n) = binary_to_decimal(concatenate(1,10,11,..., binary(n-2), binary(n-1), binary(n), binary(n-1), binary(n-2),..., 11, 10, 1))