cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A260853 Base-3 representation of a(n) is the concatenation of the base-3 representations of 1, 2, ..., n, n-1, ..., 1.

Original entry on oeis.org

0, 1, 16, 439, 35350, 2864599, 232046890, 18795930559, 1522471570630, 369960528437035, 269701223137448146, 196612191672080116867, 143330287729139571972130, 104487779754548024866115515, 76171591441065652665051372946, 55529090160536864641400481743827
Offset: 0

Views

Author

M. F. Hasler, Aug 01 2015

Keywords

Comments

The base 3 is listed in A260343, which means that a(3) = A260851(3) = 439 = 121021_3 is prime and therefore in A260852. See these sequences for more information.

Examples

			a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 16 = 121_3 is the concatenation of (1, 2, 1).
a(3) = 439 = 121021_3 is the concatenation of (1, 2, 10, 2, 1), where the middle "10" is the base-3 representation of 3.
		

Crossrefs

Base-3 variant of A173426 (base 10) and A173427 (base 2). See A260854 - A260866 for variants in other bases b = 4, ..., 16.

Programs

  • Mathematica
    Join[{0},Table[FromDigits[Join[Flatten[IntegerDigits[Range[n], 3]], Flatten[ Reverse[ Most[ IntegerDigits[Range[n],3]]]]],3],{n,20}]] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    a(n,b=3)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))

A260343 Numbers n such that the base-n number formed by concatenating the base-n numbers 1 2 ... n-1 n n-1 ... 2 1 is prime.

Original entry on oeis.org

2, 3, 4, 6, 9, 10, 16, 40, 104, 8840
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2015

Keywords

Comments

n = 8840 only corresponds to a probable prime (with 69770 decimal digits).
The concatenation (in base n) of the base-n numbers 1 2 3 ... k-1 k k-1 ... 3 2 1 is a square for k
Sequence A260852 lists the actual primes, A260852(k) = A260851(a(k)). - M. F. Hasler, Aug 02 2015

Examples

			For n = 2 we get the binary number 1 10 1 = 1101 = 13 (in decimal).
For n = 10 we get (as David Broadhurst remarks) the "memorable" decimal prime 12345678910987654321.
For n = 16 the prime is the hexadecimal number 123456789abcdef10fedcba987654321.
		

Crossrefs

For n=2 see A173427, for n=10 see A173426.
For n=3 through n=16 see A260853 - A260866.

Programs

  • Mathematica
    Select[Range[2, 120], PrimeQ@ Total[Times @@@ Transpose[{(Function[p, Power[#, p]] /@ Reverse@ Delete[Range[0, 2 # - 1], # + 1]), Flatten@ {Range[#], Reverse@ Range[# - 1]}}]] &] (* Michael De Vlieger, Aug 02 2015 *)
    bnpQ[n_]:=PrimeQ[FromDigits[Flatten[Join[IntegerDigits[#,n]&/@Range[n], IntegerDigits[ #,n]&/@Reverse[Range[n-1]]]],n]]; Select[Range[2,110],bnpQ] (* Harvey P. Dale, Feb 26 2023 *)
  • PARI
    for(b=2,9e9,ispseudoprime(p=(1+b*c=(b^b-1)\(b-1))*(c-b+1)-1)&&print1(b", ")); \\ D. Broadhurst and M. F. Hasler, Aug 02 2015
  • Python
    from gmpy2 import is_prime
    def intbase(dlist,b=10): # convert list of digits in base b to integer
        y = 0
        for d in dlist:
            y = y*b + d
        return y
    A260343_list = [n for n in range(2,500) if is_prime(intbase(list(range(1,n))+[1,0]+list(range(n-1,0,-1)), n))] # Chai Wah Wu, Aug 01 2015
    

A260866 Base-16 representation of a(n) is the concatenation of the base-16 representations of 1, 2, ..., n, n-1, ..., 1.

Original entry on oeis.org

0, 1, 289, 74529, 19088161, 4886709025, 1250999747361, 320255971115809, 81985529178309409, 20988295478809805601, 5373003642721911784225, 1375488932539155041567521, 352125166730061220638180129, 90144042682896272963324429089, 23076874926821455486290258903841
Offset: 0

Author

M. F. Hasler, Aug 01 2015

Keywords

Comments

See A260343 for the bases b such that B(b) = A_b(b) = b*c + (c - b)*(1 + b*c), is prime, where A_b is the base-b sequence, as here with b=16, and c = R(b,b) = (b^n-1)/(b-1) is the base-b repunit of length b.

Examples

			a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = (16+1)^2 = 16^2 + 2*16 + 1 = 121_16, concatenation of (1, 2, 1).
a(17) = 123456789abcdef101110fedcba987654321_16 is the concatenation of (1, 2, 3, ..., 9, a, ..., f, 10, 11, 10, f, e, ..., 1), where the middle "10, 11, 10" are the base-16 representations of 16, 17, 16.
		

Crossrefs

Base-16 variant of A173426 (base 10) and A173427 (base 2). See A260853 - A260865 for variants in other bases.

Programs

  • PARI
    a(n,b=16)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))

Formula

For n < b = 16, we have a(n) = A_b(n) = R(b,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.

A260851 a(n) in base n is the concatenation of the base n expansions of (1, 2, 3, ..., n-1, n, n-1, ..., 3, 2, 1).

Original entry on oeis.org

1, 13, 439, 27961, 3034961, 522134761, 131870760799, 45954960939217, 21107054541321649, 12345678910987654321, 8954302429379707945271, 7883984846509322664831433, 8281481197999449959084458465, 10228838696316240496325238416281, 14674825961700306151086890240104831
Offset: 1

Author

M. F. Hasler, Aug 01 2015

Keywords

Comments

Sequences A173427, A260853 - A260859, A173426, A260861 - A260866, A260860 list the numbers A_b(n) whose base b expansion is the concatenation of the base b expansions of (1, 2, ..., n, n-1, ..., 1). For n < b these are the squares of the repdigits of length n in base b, so the first candidate for a prime is the term with n = b. These are the numbers listed here. Sequence A260343 gives the bases b for which this is indeed a prime, the corresponding primes a(A260343(n)) are listed in A260852.
The initial term a(1) = 1 refers to the unary or "tally mark" representation of the numbers, cf. A000042. It can be considered as purely conventional.

Examples

			a(1) = 1 is the "concatenation" of (1) which is the unary representation of 1, cf A000042.
a(2) = 13 = 1101[2] = concatenation of (1, 10, 1), where 10 is the base 2 representation of 2.
a(3) = 439 = 121021[3] = concatenation of (1, 2, 10, 2, 1), where 10 is the base 3 representation of 3.
a(10) = 12345678910987654321 is the concatenation of (1, 2, 3, ..., 9, 10, 9, 8, ..., 2, 1); it is also a prime.
		

Crossrefs

For primes in this sequence see A260343, A260852.

Programs

  • Magma
    [1] cat [((n^n-1)/(n-1) - n + 1)*(1 + n*(n^n-1)/(n-1)) - 1: n in [2..15]]; // Vincenzo Librandi, Aug 02 2015
    
  • Maple
    f:=proc(b) local i;
    add((i+1)*b^i, i=0..b-2) + b^b + add(i*b^(2*b-i),i=1..b-1); end;
    [seq(f(b),b=1..25)]; # N. J. A. Sloane, Sep 26 2015
  • Mathematica
    Join[{1}, Table[((n^n - 1)/(n - 1) - n + 1) (1 + n (n^n - 1)/(n - 1)) - 1, {n, 2, 30}]] (* Vincenzo Librandi, Aug 02 2015 *)
  • PARI
    A260851(n)=(1+n*r=if(n>2,n^n\(n-1),n*2-1))*(r-n+1)-1
    
  • Python
    def A260851(n): return sum(i*(n**(2*n-i)+n**(i-1)) for i in range(1, n)) + n**n # Ya-Ping Lu, Dec 23 2021

Formula

a(n) = n*r + (r - n)*(1 + n*r) = (r - n + 1)*(1 + n*r) - 1, where r = (n^n-1)/(n-1) is the base n repunit of length n, r = 1 for n = 1.
Another closed-form expression for the series is a(n) = (n^(2*n+1) + (-n^3 + 2*n^2 - 2*n - 1)*n^n + 1)/(n - 1)^2. - Serge Batalov, Aug 02 2015

A260852 Primes in A260851: numbers whose base n expansion is equal to the concatenation of the base n expansions of (1, 2, 3, ..., n-1, n, n-1, ..., 3, 2, 1).

Original entry on oeis.org

13, 439, 27961, 522134761, 21107054541321649, 12345678910987654321, 24197857203266734883076090685781525281
Offset: 1

Author

M. F. Hasler, Aug 02 2015

Keywords

Comments

Primes of the form (1+r(b)*b)*(r(b)-b+1)-1 with r(b)=(b^b-1)/(b-1).
Sequences A173427, A260853 - A260859, A173426, A260861 - A260866, A260860 list the numbers whose base b expansion is the concatenation of the base b expansions of (1, 2, ..., n, n-1, ..., 1). For n < b these are the squares of the repdigits of length n in base b, so the first candidate is the b-th term. These are the numbers listed in A260851. For the bases listed in A260343, this candidate is indeed prime: these are the primes listed here.
a(8) = A260851(40) has already 127 digits and is therefore too large to be displayed here.

Programs

  • PARI
    for(b=2,999,ispseudoprime(p=(1+b*c=(b^b-1)\(b-1))*(c-b+1)-1)&&print1(p","))

Formula

a(n) = A260851(A260343(n)).

A260871 Primes whose base-b representation is the concatenation of the base-b representations of (1, 2, ..., k, k-1, ..., 1), for some b > 1 and some k > 1.

Original entry on oeis.org

13, 439, 7069, 27961, 2864599, 522134761, 21107054541321649, 12345678910987654321, 1919434248892467772593071038679, 24197857203266734883076090685781525281, 1457624695486449811479514346937750581569993, 1263023202979901596155544853826881857760357011832664659152364441
Offset: 1

Author

M. F. Hasler, Aug 02 2015; edited Aug 23 2015

Keywords

Comments

The sequences A[b] of numbers whose base-b representation is the concatenation of the base-b representations of (1, 2, ..., k, k-1, ..., 1), for a given b and all k >= 1, are recorded as A173427, A260853 - A260859, A173426, A260861 - A260866 and A260860 for bases b=2, ..., b=16 and b=60.
This is a supersequence of A260852, which lists only primes of the form A[b](b) - see A260343 for the b-values. In addition, the numbers A[b](b+2) are also prime for b=(2, 3, 11, 62, 182, ...), corresponding to terms a(3) = 7069, a(5) = 2864599, a(9) = 1919434248892467772593071038679, ... Still other examples are a(11) = A[12](16), a(12) = A[14](21), ... See the Broadhurst file for further data. [Edited by N. J. A. Sloane, Aug 24 2015]
Other subsequences of the form A[b](b+d) with at least 4 probable primes include: d=36, b=(2, 103, 117, 2804, ...); d=70, b=(74, 225, 229, 545, ...); d=200, b=(126, 315, 387, 2697, ...). For odd d, I know of 2 series with at least 3 probable primes: d=15, b=(18, 154, 1262, ...); d=165, b=(522, 602, 1858,...). - David Broadhurst, Aug 28 2015
See A261170 for the number of decimal digits of a(n); A261171 and A261172 for the k- and b-values such that a(n) = A[b](k). - M. F. Hasler, Sep 15 2015

Examples

			The first two terms are of the form A[b](b) with b=2 and b=3:
a(1) = 13 = 1101_2 = concat(1, 2=10_2, 1).
a(2) = 439 = 121021_3 = concat(1, 2, 3=10_3, 2, 1).
See comments for further examples.
		

Crossrefs

The sequences A[b] are listed in A173427 for b=2, A260853 for b=3, A260854 for b=4, A260855 for b=5, A260856 for b=6, A260857 for b=7, A260858 for b=8, A260859 for b=9, A173426 for b=10, A260861 for b=11, A260862 for b=12, A260863 for b=13, A260864 for b=14, A260865 for b=15, A260866 for b=16, A260860 for b=60.

Programs

  • PARI
    {L=1e99;A260871=List();for(b=2,9e9,for(n=b,9e9,if(Lb)));ispseudoprime(p)&&listput(A260871,p)));vecsort(A260871)}

A260859 Base-9 representation of a(n) is the concatenation of the base-9 representations of 1, 2, ..., n, n-1, ..., 1.

Original entry on oeis.org

0, 1, 100, 8281, 672400, 54479161, 4412944900, 357449732641, 28953439105600, 21107054541321649, 138483384602892402628, 908589486379899193778809, 5961255620138564686107812272, 39111798123729126657669459066697, 256612507489786800304910707633347364
Offset: 0

Author

M. F. Hasler, Aug 01 2015

Keywords

Comments

The base 9 is listed in A260343, because a(9) = A260851(9) = 21107054541321649 = 123456781087654321_9 is prime and therefore in A260852. See these sequences for more information.

Examples

			a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 100 = (9+1)^2 = 9^2 + 2*9 + 1 = 121_9, concatenation of (1, 2, 1).
a(10) = 1234567810111087654321_9 is the concatenation of (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 10, 8, 7, 6, 5, 4, 3, 2, 1), where the middle "10, 11, 10" are the base-9 representations of 9, 10, 9.
		

Crossrefs

Base-9 variant of A173426 (base 10) and A173427 (base 2). See A260853 - A260866 for the variants in other bases.

Programs

  • PARI
    a(n,b=9)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))

Formula

For n < b = 9, we have a(n) = A_b(n) = R(b,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.

A260860 Base-60 representation of a(n) is the concatenation of the base-60 representations of 1, 2, ..., n, n-1, ..., 1.

Original entry on oeis.org

0, 1, 3721, 13402921, 48250954921, 173703464074921, 625332472251274921, 2251196900199483274921, 8104308840723833403274921, 29175511826606141868603274921, 105031842575782131223980603274921, 378114633272815673636150700603274921
Offset: 0

Author

M. F. Hasler, Aug 01 2015

Keywords

Comments

See A260343 for the bases b such that A260851(b) = A_b(b) = b*c + (c - b)*(1 + b*c), is prime, where A_b is the base-b sequence, as here with b=60, and c = R(b,b) = (b^b-1)/(b-1) is the base-b repunit of length b.

Examples

			a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = (60+1)^2 = 60^2 + 2*60 + 1 = 121_60, concatenation of (1, 2, 1).
a(61) = 123...101110...21_60, which is the concatenation of (1, 2, 3, ..., 10, 11, 10, ..., 2, 1), where the middle "10, 11, 10" are the base-60 representations of 60, 61, 60.
		

Crossrefs

Base-60 variant of A173426 (base 10) and A173427 (base 2). See A260853 - A260866 for variants in other bases.

Programs

  • PARI
    a(n,b=60)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))

Formula

For n < b = 60, we have a(n) = A_b(n) = R(b,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.

A260861 Base-11 representation of a(n) is the concatenation of the base-11 representations of 1, 2, ..., n, n-1, ..., 1.

Original entry on oeis.org

0, 1, 144, 17689, 2143296, 259371025, 31384248336, 3797497946089, 459497294348544, 55599173087763361, 6727499948806851600, 8954302429379707945271, 131099941868210323821706774, 1919434248892467772593071038679, 28102436838034620750856132266604106
Offset: 0

Author

M. F. Hasler, Aug 01 2015

Keywords

Comments

The first prime in this sequence is a(13) = A260871(9). Since a(11) is not prime, the base 11 is not listed in A260343.

Examples

			a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = (11+1)^2 = 11^2 + 2*11 + 1 = 121_11, concatenation of (1, 2, 1).
a(12) = 123456789a101110a987654321_11 is the concatenation of (1, 2, 3, ..., 9, a, 10, 11, 10, a, 9, ..., 1), where "a, 10, 11" are the base-11 representations of 10, 11, 12.
		

Crossrefs

Base-11 variant of A173426 (base 10) and A173427 (base 2). See A260853 - A260866 for variants in other bases.

Programs

  • PARI
    a(n,b=11)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))

Formula

For n < b = 11, we have a(n) = R(b,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.

A261171 Value of k for which A260871(n) = A[b](k), with b = A261172(n); A[b](k) = the number whose base-b representation is the concatenation of the base-b representations of (1, ..., k, k-1, ..., 1).

Original entry on oeis.org

2, 3, 4, 4, 5, 6, 9, 10, 13, 16, 16, 21, 23, 23, 29, 28, 38, 39, 33, 34, 41, 40, 37, 37, 41, 42, 44, 64, 77, 82, 75, 83, 83, 87, 104, 104, 86, 94
Offset: 1

Author

M. F. Hasler, Aug 23 2015

Keywords

Comments

For more data, see the 3rd column of D. Broadhurst's list of [n, b, k, length(A260871(n))] given in A260871.
This and the companion sequence A261172 are a compact way of recording the very large primes listed in A260871 by means of the k- and b-value such that A260871(n) = A[A261172(n)](A261171(n)). See A261170 for the number of decimal digits of these primes. - M. F. Hasler, Sep 15 2015

Examples

			A260871(1) = A[2](2), therefore a(1) = 2.
A260871(2) = A[3](3), therefore a(2) = 3.
A260871(3) = A[2](4), therefore a(3) = 4.
		

Crossrefs

Cf. A173427, A260853 - A260859, A173426, A260861 - A260866 and A260860 for A[b] with b=2, ..., b=16 and b=60.
See also A260852 = { primes of the form A260851(b) = A[b](b), b in A260343 }.

Programs

  • PARI
    A261171_list(LIM=1e499)={my(A=List(),p,d);for(b=2,9e9,for(n=b,9e9,if(LIMb)));ispseudoprime(p)&&listput(A,[log(p),n])));apply(t->t[2],vecsort(A))}

Formula

A260871(n) = A[A261172(n)](a(n)), where A[b](k) = Sum_{i=1..#d} d[i]*b^(#d-i), d = concatenation of (1, 2, ..., k, k-1, ..., 1) all written in base b.
Showing 1-10 of 23 results. Next