2, 3, 4, 6, 9, 10, 16, 40, 104, 8840
Offset: 1
A260866
Base-16 representation of a(n) is the concatenation of the base-16 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 289, 74529, 19088161, 4886709025, 1250999747361, 320255971115809, 81985529178309409, 20988295478809805601, 5373003642721911784225, 1375488932539155041567521, 352125166730061220638180129, 90144042682896272963324429089, 23076874926821455486290258903841
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = (16+1)^2 = 16^2 + 2*16 + 1 = 121_16, concatenation of (1, 2, 1).
a(17) = 123456789abcdef101110fedcba987654321_16 is the concatenation of (1, 2, 3, ..., 9, a, ..., f, 10, 11, 10, f, e, ..., 1), where the middle "10, 11, 10" are the base-16 representations of 16, 17, 16.
-
a(n,b=16)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A260851
a(n) in base n is the concatenation of the base n expansions of (1, 2, 3, ..., n-1, n, n-1, ..., 3, 2, 1).
Original entry on oeis.org
1, 13, 439, 27961, 3034961, 522134761, 131870760799, 45954960939217, 21107054541321649, 12345678910987654321, 8954302429379707945271, 7883984846509322664831433, 8281481197999449959084458465, 10228838696316240496325238416281, 14674825961700306151086890240104831
Offset: 1
a(1) = 1 is the "concatenation" of (1) which is the unary representation of 1, cf A000042.
a(2) = 13 = 1101[2] = concatenation of (1, 10, 1), where 10 is the base 2 representation of 2.
a(3) = 439 = 121021[3] = concatenation of (1, 2, 10, 2, 1), where 10 is the base 3 representation of 3.
a(10) = 12345678910987654321 is the concatenation of (1, 2, 3, ..., 9, 10, 9, 8, ..., 2, 1); it is also a prime.
-
[1] cat [((n^n-1)/(n-1) - n + 1)*(1 + n*(n^n-1)/(n-1)) - 1: n in [2..15]]; // Vincenzo Librandi, Aug 02 2015
-
f:=proc(b) local i;
add((i+1)*b^i, i=0..b-2) + b^b + add(i*b^(2*b-i),i=1..b-1); end;
[seq(f(b),b=1..25)]; # N. J. A. Sloane, Sep 26 2015
-
Join[{1}, Table[((n^n - 1)/(n - 1) - n + 1) (1 + n (n^n - 1)/(n - 1)) - 1, {n, 2, 30}]] (* Vincenzo Librandi, Aug 02 2015 *)
-
A260851(n)=(1+n*r=if(n>2,n^n\(n-1),n*2-1))*(r-n+1)-1
-
def A260851(n): return sum(i*(n**(2*n-i)+n**(i-1)) for i in range(1, n)) + n**n # Ya-Ping Lu, Dec 23 2021
A260852
Primes in A260851: numbers whose base n expansion is equal to the concatenation of the base n expansions of (1, 2, 3, ..., n-1, n, n-1, ..., 3, 2, 1).
Original entry on oeis.org
13, 439, 27961, 522134761, 21107054541321649, 12345678910987654321, 24197857203266734883076090685781525281
Offset: 1
A260871
Primes whose base-b representation is the concatenation of the base-b representations of (1, 2, ..., k, k-1, ..., 1), for some b > 1 and some k > 1.
Original entry on oeis.org
13, 439, 7069, 27961, 2864599, 522134761, 21107054541321649, 12345678910987654321, 1919434248892467772593071038679, 24197857203266734883076090685781525281, 1457624695486449811479514346937750581569993, 1263023202979901596155544853826881857760357011832664659152364441
Offset: 1
The first two terms are of the form A[b](b) with b=2 and b=3:
a(1) = 13 = 1101_2 = concat(1, 2=10_2, 1).
a(2) = 439 = 121021_3 = concat(1, 2, 3=10_3, 2, 1).
See comments for further examples.
- David Broadhurst, Conjectured list of initial 434 terms (The notation is that [15, [25, 29], 91] means that a(15) is A[25](29) with 91 decimal digits and [237, [895, 1289], 9933] means that a(237) is probably A[895](1289) with 9933 decimal digits.)
The sequences A[b] are listed in
A173427 for b=2,
A260853 for b=3,
A260854 for b=4,
A260855 for b=5,
A260856 for b=6,
A260857 for b=7,
A260858 for b=8,
A260859 for b=9,
A173426 for b=10,
A260861 for b=11,
A260862 for b=12,
A260863 for b=13,
A260864 for b=14,
A260865 for b=15,
A260866 for b=16,
A260860 for b=60.
-
{L=1e99;A260871=List();for(b=2,9e9,for(n=b,9e9,if(Lb)));ispseudoprime(p)&&listput(A260871,p)));vecsort(A260871)}
A260859
Base-9 representation of a(n) is the concatenation of the base-9 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 100, 8281, 672400, 54479161, 4412944900, 357449732641, 28953439105600, 21107054541321649, 138483384602892402628, 908589486379899193778809, 5961255620138564686107812272, 39111798123729126657669459066697, 256612507489786800304910707633347364
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = 100 = (9+1)^2 = 9^2 + 2*9 + 1 = 121_9, concatenation of (1, 2, 1).
a(10) = 1234567810111087654321_9 is the concatenation of (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 10, 8, 7, 6, 5, 4, 3, 2, 1), where the middle "10, 11, 10" are the base-9 representations of 9, 10, 9.
-
a(n,b=9)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A260860
Base-60 representation of a(n) is the concatenation of the base-60 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 3721, 13402921, 48250954921, 173703464074921, 625332472251274921, 2251196900199483274921, 8104308840723833403274921, 29175511826606141868603274921, 105031842575782131223980603274921, 378114633272815673636150700603274921
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = (60+1)^2 = 60^2 + 2*60 + 1 = 121_60, concatenation of (1, 2, 1).
a(61) = 123...101110...21_60, which is the concatenation of (1, 2, 3, ..., 10, 11, 10, ..., 2, 1), where the middle "10, 11, 10" are the base-60 representations of 60, 61, 60.
-
a(n,b=60)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A260861
Base-11 representation of a(n) is the concatenation of the base-11 representations of 1, 2, ..., n, n-1, ..., 1.
Original entry on oeis.org
0, 1, 144, 17689, 2143296, 259371025, 31384248336, 3797497946089, 459497294348544, 55599173087763361, 6727499948806851600, 8954302429379707945271, 131099941868210323821706774, 1919434248892467772593071038679, 28102436838034620750856132266604106
Offset: 0
a(0) = 0 is the result of the empty sum corresponding to 0 digits.
a(2) = (11+1)^2 = 11^2 + 2*11 + 1 = 121_11, concatenation of (1, 2, 1).
a(12) = 123456789a101110a987654321_11 is the concatenation of (1, 2, 3, ..., 9, a, 10, 11, 10, a, 9, ..., 1), where "a, 10, 11" are the base-11 representations of 10, 11, 12.
-
a(n,b=11)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
A261171
Value of k for which A260871(n) = A[b](k), with b = A261172(n); A[b](k) = the number whose base-b representation is the concatenation of the base-b representations of (1, ..., k, k-1, ..., 1).
Original entry on oeis.org
2, 3, 4, 4, 5, 6, 9, 10, 13, 16, 16, 21, 23, 23, 29, 28, 38, 39, 33, 34, 41, 40, 37, 37, 41, 42, 44, 64, 77, 82, 75, 83, 83, 87, 104, 104, 86, 94
Offset: 1
A260871(1) = A[2](2), therefore a(1) = 2.
A260871(2) = A[3](3), therefore a(2) = 3.
A260871(3) = A[2](4), therefore a(3) = 4.
-
A261171_list(LIM=1e499)={my(A=List(),p,d);for(b=2,9e9,for(n=b,9e9,if(LIMb)));ispseudoprime(p)&&listput(A,[log(p),n])));apply(t->t[2],vecsort(A))}
Comments