cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173429 Number of ways to place 3 nonattacking nightriders on an n X n board.

Original entry on oeis.org

0, 4, 36, 276, 1152, 3920, 10568, 25348, 53848, 106292, 194732, 339416, 562652, 899796, 1388008, 2083908, 3044992, 4356344, 6102144, 8404204, 11380564, 15199100, 20019856, 26067112, 33551812, 42766092, 53981600, 67570804
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 18 2010

Keywords

Comments

A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(36 x^29 + 124 x^28 + 496 x^27 + 1128 x^26 + 2632 x^25 + 4280 x^24 + 7160 x^23 + 9296 x^22 + 12936 x^21 + 14828 x^20 + 18828 x^19 + 20164 x^18 + 23820 x^17 + 23684 x^16 + 25460 x^15 + 22972 x^14 + 22412 x^13 + 18532 x^12 + 16820 x^11 + 12996 x^10 + 10912 x^9 + 7552 x^8 + 5428 x^7 + 3012 x^6 + 1652 x^5 + 604 x^4 + 204 x^3 + 28 x^2 + 4 x) / ((x + 1)^4 (x - 1)^7 (x^2 + 1) (x^2 + x + 1) (x^8 + x^6 + x^4 + x^2 + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)
    LinearRecurrence[{2,0,-1,0,-2,2,0,1,0,0,-3,0,2,0,4,-4,0,-2,0,3,0,0,-1,0,-2,2,0,1,0,-2,1},{0,4,36,276,1152,3920,10568,25348,53848,106292,194732,339416,562652,899796,1388008,2083908,3044992,4356344,6102144,8404204,11380564,15199100,20019856,26067112,33551812,42766092,53981600,67570804,83876732,103365728,126463668},30] (* Harvey P. Dale, Dec 27 2015 *)

Formula

a(n) = 1/6*n^6-5/6*n^5+4031/1440*n^4-621/100*n^3+3313/288*n^2-2623/150*n+82321/43200 + (1/4*n^3-25/32*n^2+77/50*n-43/64)*(-1)^n - (1+(-1)^n)/8*cos(Pi*n/2) + 8/27*(-1)^n*cos(Pi*n/3) + (-4*(-1)^n+(sqrt(5)+3+(1-sqrt(5)/5)*(-1)^n)*n)*4/25*cos(Pi*n/5) + (sqrt(58*sqrt(5)+130)-sqrt(50-22*sqrt(5))*(-1)^n/5)*16/25*sin(Pi*n/5) + (-4+(sqrt(5)/5+1+(3-sqrt(5))*(-1)^n)*n)*4/25*cos(2*Pi*n/5) + (sqrt(22*sqrt(5)+50)/5-sqrt(130-58*sqrt(5))*(-1)^n)*16/25*sin(2*Pi*n/5).
Recurrence: a(n) = 2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-3*a(n-11)+2*a(n-13)+4*a(n-15)-4*a(n-16)-2*a(n-18)+3*a(n-20)-a(n-23)-2*a(n-25)+2*a(n-26)+a(n-28)-2*a(n-30)+a(n-31), n>=32.
G.f.: -(36*x^30+124*x^29+496*x^28+1128*x^27+2632*x^26+4280*x^25+7160*x^24+9296*x^23+12936*x^22+14828*x^21+18828*x^20+20164*x^19+23820*x^18+23684*x^17+25460*x^16+22972*x^15+22412*x^14+18532*x^13+16820*x^12+12996*x^11+10912*x^10+7552*x^9+5428*x^8+3012*x^7+1652*x^6+604*x^5+204*x^4+28*x^3+4*x^2)/((x+1)^4*(x-1)^7*(x^2+1)*(x^2+x+1)*(x^8+x^6+x^4+x^2+1)^2). - Vaclav Kotesovec, Mar 22 2010