A173442 Number of divisors d of number n such that sigma(d) does not divide n.
0, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 3, 4, 1, 4, 1, 5, 3, 3, 1, 4, 2, 3, 3, 4, 1, 5, 1, 5, 3, 3, 3, 5, 1, 3, 3, 7, 1, 6, 1, 5, 5, 3, 1, 6, 2, 5, 3, 5, 1, 6, 3, 4, 3, 3, 1, 7, 1, 3, 5, 6, 3, 6, 1, 5, 3, 7, 1, 8, 1, 3, 5, 5, 3, 6, 1, 9, 4, 3, 1, 6, 3, 3, 3, 7, 1, 8, 3, 5, 3, 3, 3, 8, 1, 5, 5, 8
Offset: 1
Keywords
Examples
For n = 12, a(12) = 2. We see that the divisors of 12 are 1, 2, 3, 4, 6, 12. The corresponding sigma(d) are 1, 3, 4, 7, 12, 28. The sigma(d) which do not divide n for 2 divisors d are 4 and 12.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> nops(select(t -> n mod numtheory:-sigma(t) <> 0, numtheory:-divisors(n))): map(f, [$1..100]); # Robert Israel, Oct 10 2017
-
Mathematica
Table[Length[Select[Divisors[n], Not[Divisible[n, DivisorSigma[1, #]]], &]], {n, 100}] (* Alonso del Arte, Oct 10 2017 *)
-
PARI
a(n) = sumdiv(n, d, (n % sigma(d)) != 0); \\ Michel Marcus, Oct 11 2017
Extensions
More terms from Robert Israel, Oct 10 2017
Comments