A173476 Triangle T(n, k) = 1 + (k!)^2 - 2*k!*(n-k)! + ((n-k)!)^2, read by rows.
1, 1, 1, 2, 1, 2, 26, 2, 2, 26, 530, 26, 1, 26, 530, 14162, 530, 17, 17, 530, 14162, 516962, 14162, 485, 1, 485, 14162, 516962, 25391522, 516962, 13925, 325, 325, 13925, 516962, 25391522, 1625621762, 25391522, 515525, 12997, 1, 12997, 515525, 25391522, 1625621762
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 2, 1, 2; 26, 2, 2, 26; 530, 26, 1, 26, 530; 14162, 530, 17, 17, 530, 14162; 516962, 14162, 485, 1, 485, 14162, 516962; 25391522, 516962, 13925, 325, 325, 13925, 516962, 25391522; 1625621762, 25391522, 515525, 12997, 1, 12997, 515525, 25391522, 1625621762;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
[(Factorial(n-k) -Factorial(k))^2 +1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2021
-
Mathematica
Table[((n-k)! -k!)^2 +1, {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 19 2021 *)
-
Sage
flatten([[(factorial(n-k) -factorial(k))^2 +1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2021
Formula
T(n, k) = 1 + ( (n-k)! - k! )^2.
Extensions
Edited by G. C. Greubel, Feb 19 2021