cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173493 Number of distinct squares that can be partitioned into distinct divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 4, 5, 1, 6, 1, 6, 3, 3, 1, 7, 2, 2, 4, 7, 1, 8, 1, 7, 3, 2, 2, 9, 1, 1, 3, 9, 1, 9, 1, 7, 7, 3, 1, 11, 2, 5, 2, 4, 1, 10, 2, 10, 2, 1, 1, 12, 1, 2, 7, 11, 1, 12, 1, 4, 2, 11, 1, 13, 1, 1, 9, 7, 1, 12, 1, 13, 6, 1, 1, 14, 1, 1, 2, 13, 1, 15, 1, 6, 2, 3, 3, 15, 1, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

The partitions of the squares are generally not unique, see examples.

Examples

			divisors(9) = {1, 3, 9}: a(9) = #{1, 3+1, 9} = 3.
divisors(10) = {1, 2, 5, 10}: a(10) = #{1, 10+5+1} = 2.
divisors(12) = {1,2,3,4,6,12}: a(12) = #{1,4,9,16,25} = 5:
  2^2 = 4 = 3 + 1,
  3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2,
  4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1,
  5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1.
divisors(42)={1,2,3,6,7,14,21,42}: a(42)=#{k^2: 1<=k<=9}=9:
  2^2 = 3+1,
  3^2 = 7+2 = 6+3 = 6+2+1,
  4^2 = 14+2 = 7+6+3 = 7+6+2+1,
  5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2,
  6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2,
  7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1,
  8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2,
  9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = Divisors[n], sum, sq, x}, sum = Plus @@ d; sq = Range[Floor[Sqrt[sum]]]^2; Count[CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sq]], ?(# > 0&)]]; Array[a, 100] (* _Amiram Eldar, Apr 16 2025 *)

Formula

a(n) <= A078705(n).
a(A173494(n)) = 1.