A173493 Number of distinct squares that can be partitioned into distinct divisors of n.
1, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 4, 5, 1, 6, 1, 6, 3, 3, 1, 7, 2, 2, 4, 7, 1, 8, 1, 7, 3, 2, 2, 9, 1, 1, 3, 9, 1, 9, 1, 7, 7, 3, 1, 11, 2, 5, 2, 4, 1, 10, 2, 10, 2, 1, 1, 12, 1, 2, 7, 11, 1, 12, 1, 4, 2, 11, 1, 13, 1, 1, 9, 7, 1, 12, 1, 13, 6, 1, 1, 14, 1, 1, 2, 13, 1, 15, 1, 6, 2, 3, 3, 15, 1, 8
Offset: 1
Keywords
Examples
divisors(9) = {1, 3, 9}: a(9) = #{1, 3+1, 9} = 3. divisors(10) = {1, 2, 5, 10}: a(10) = #{1, 10+5+1} = 2. divisors(12) = {1,2,3,4,6,12}: a(12) = #{1,4,9,16,25} = 5: 2^2 = 4 = 3 + 1, 3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2, 4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1, 5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1. divisors(42)={1,2,3,6,7,14,21,42}: a(42)=#{k^2: 1<=k<=9}=9: 2^2 = 3+1, 3^2 = 7+2 = 6+3 = 6+2+1, 4^2 = 14+2 = 7+6+3 = 7+6+2+1, 5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2, 6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2, 7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1, 8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2, 9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..250 from Reinhard Zumkeller)
Programs
-
Mathematica
a[n_] := Module[{d = Divisors[n], sum, sq, x}, sum = Plus @@ d; sq = Range[Floor[Sqrt[sum]]]^2; Count[CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sq]], ?(# > 0&)]]; Array[a, 100] (* _Amiram Eldar, Apr 16 2025 *)
Comments