A173507 Triangle T(n, k, q) = 2*c(n, q)/(c(k,q)*c(n-k,q)) where c(n,q) = Product_{j=0..n} (q^(q^j) - 1) and q=3, read by rows.
1, 1, 1, 1, 757, 1, 1, 293292210961, 293292210961, 1, 1, 17054864932424529613394216562274995877, 6607739819910193062857078382087289676159166721, 17054864932424529613394216562274995877, 1
Offset: 0
Examples
The triangle begins as: 1; 1, 1; 1, 757, 1; 1, 293292210961, 293292210961, 1;
Links
- G. C. Greubel, Rows n = 0..7 of the triangle, flattened
Programs
-
Mathematica
c[n_, q_]:= Product[q^(q^j) -1, {j,0,n}]; T[n_, k_, q_]:= 2*c[n, q]/(c[k, q]*c[n-k, q]); Table[T[n, k, 3], {n, 0, 6}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 25 2021 *)
-
Sage
@CachedFunction def c(n,q): return product(q^(q^j) -1 for j in (0..n)) def T(n,k,q): return 2*c(n,q)/(c(k,q)*c(n-k,q)) flatten([[T(n,k,3) for k in (0..n)] for n in (0..6)]) # G. C. Greubel, Apr 25 2021
Formula
T(n, k, q) = 2*c(n, q)/(c(k,q)*c(n-k,q)) where c(n,q) = Product_{j=0..n} (q^(q^j) - 1) and q=3.
Extensions
Edited by G. C. Greubel, Apr 25 2021