cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173547 Number of 3 X 3 semimagic squares with distinct positive values and magic sum n.

Original entry on oeis.org

72, 144, 288, 576, 864, 1440, 2088, 3024, 3888, 5904, 6984, 9432, 12168, 14904, 17928, 23832, 26784, 33048, 39672, 46584, 53640, 65592, 72504, 85248, 98928, 111816, 125208, 147528, 160632, 182808, 206424, 229176, 252648, 287928, 310752
Offset: 15

Views

Author

Thomas Zaslavsky, Feb 21 2010, Feb 24 2010, Mar 03 2010

Keywords

Comments

In a semimagic squares the row and column sums must all be equal to the magic sum. a(n) is given by a quasipolynomial of degree 4 and period 840.
a(15) is the first term because the values 1,...,9 make magic sum 15. [From Thomas Zaslavsky, Mar 03 2010]

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

A173546 counts the same squares by upper bound on the entries. Cf. A108576, A108577, A108578, A108579, A173548, A173549.

Formula

G.f.: 72 * x^3/(1-x)^3 * { x^7/[(x-1)*(x^2-1)^3] + 2x^7/[(x-1)*(x^2-1)*(x^4-1)] + x^7/[(x-1)*(x^6-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^3-1)*(x^4-1)] + x^7/(x^7-1) + x^9/[(x-1)*(x^4-1)^2] + 2*x^9/[(x^2-1)*(x^3-1)*(x^4-1)] + 2*x^9/[(x^3-1)*(x^6-1)] + x^9/[(x^4-1)*(x^5-1)] + x^11/[(x^3-1)*(x^4-1)^2] + x^11/[(x^3-1)*(x^8-1)] + x^11/[(x^5-1)*(x^6-1)] + x^13/[(x^5-1)*(x^8-1)] }