A173585 Triangle T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} t(2*j, q), t(n, q) = (1/4)*( (2 + sqrt(q))^n + (2 - sqrt(q))^n - 2 ), and q = 3, read by rows.
1, 1, 1, 1, 16, 1, 1, 225, 225, 1, 1, 3136, 44100, 3136, 1, 1, 43681, 8561476, 8561476, 43681, 1, 1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1, 1, 8473921, 322220846025, 62555239000969, 62555239000969, 322220846025, 8473921, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 16, 1; 1, 225, 225, 1; 1, 3136, 44100, 3136, 1; 1, 43681, 8561476, 8561476, 43681, 1; 1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
b:= func< n, k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[1 - Evaluate(ChebyshevT(j), k+1)^2 : j in [1..n]]) >; T:= func< n,k,m | b(n,m)/(b(k,m)*b(n-k,m)) >; [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 06 2021
-
Mathematica
(* First program *) f[n_, q_]:= (1/4)*((2+Sqrt[q])^n + (2-Sqrt[q])^n -2); c[n_, q_]:= Product[f[k, q], {k, 2, n, 2}]//Simplify; T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n - k, q]); Table[T[n, k, 3], {n, 0, 10, 2}, {k, 0, n, 2}]//Flatten (* modified by G. C. Greubel, Jul 06 2021 *) (* Second program *) t[n_, q_]:= (1/4)*(Round[(2+Sqrt[q])^n + (2-Sqrt[q])^n] -2); c[n_, q_]:= Product[t[2*j, q], {j,n}]; T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]); Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 06 2021 *)
-
Sage
@CachedFunction def f(n,q): return (1/4)*( round((2 + sqrt(q))^n + (2 - sqrt(q))^n) - 2 ) def c(n,q): return product( f(2*j, q) for j in (1..n)) def T(n,k,q): return c(n, q)/(c(k, q)*c(n-k, q)) flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 06 2021
Formula
T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} t(2*j, q), t(n, q) = (1/4)*( (2 + sqrt(q))^n + (2 - sqrt(q))^n - 2 ), and q = 3.
From G. C. Greubel, Jul 06 2021: (Start)
T(n, k, m) = b(n,m)/(b(k,m)*b(n-k,m)), where b(n, k) = (1/2^n)*Product_{j=1..n} (1 - ChebyshevT(2*j, k+1)), b(n, 0) = n!, and m = 1.
T(n, k, m) = Product_{j=1..n-k} ( (1 - ChebyshevT(2*j+2*k, m+1))/(1 - ChebyshevT(2*j, m+1)) ) with m = 1. (End)
Extensions
Edited by G. C. Greubel, Jul 06 2021