cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173593 Numbers having in binary representation exactly two ones in three consecutive digits.

Original entry on oeis.org

3, 5, 6, 11, 13, 22, 27, 45, 54, 91, 109, 182, 219, 365, 438, 731, 877, 1462, 1755, 2925, 3510, 5851, 7021, 11702, 14043, 23405, 28086, 46811, 56173, 93622, 112347, 187245, 224694, 374491, 449389, 748982, 898779, 1497965, 1797558, 2995931, 3595117
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2010

Keywords

Comments

a(2*n-1) = A033129(n+1);
a(3*n-2) = A113836(n+1);
a(6*n-5) = A083713(n);
a(2*n) - a(2*n-1) = A077947(n+1);
a(2*n+1) - a(2*n) = A077947(n).

Examples

			a(10) =   91 =      1011011_2
a(11) =  109 =      1101101_2
a(12) =  182 =     10110110_2
a(13) =  219 =     11011011_2
a(14) =  365 =    101101101_2
a(15) =  438 =    110110110_2
a(16) =  731 =   1011011011_2
a(17) =  877 =   1101101101_2
a(18) = 1462 =  10110110110_2
a(19) = 1755 =  11011011011_2
a(20) = 2925 = 101101101101_2
		

Crossrefs

Cf. A007088.
Bisections A033129, A033120.

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 1, 0, -2}, {3, 5, 6, 11, 13}, 50] (* Jean-François Alcover, Feb 17 2018 *)

Formula

From R. J. Mathar, Feb 24 2010: (Start)
a(n) = 2*a(n-2) + a(n-3) - 2*a(n-5).
G.f.: x*(-3-5*x+2*x^3+4*x^4)/ ((1-x) * (1+x+x^2) * (2*x^2-1)). (End)