cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173615 Numbers k such that rad(k)^2 divides sigma(k).

Original entry on oeis.org

1, 96, 864, 1080, 1782, 6144, 7128, 7776, 17280, 27000, 28512, 54432, 55296, 69984, 87480, 114048, 215622, 276480, 381024, 393216, 432000, 433026, 456192, 497664, 629856, 675000, 862488, 1382400, 1399680, 1677312, 1732104, 1824768, 2187000, 2195424, 2667168
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(n) is the product of the primes dividing n (A007947) and sigma(n) = sum of divisors of n (A000203). Considering the integers k = (2^a)*(3^b), where a+1 = 6*m and b >= 1, we obtain an infinite number of numbers such that rad(k)^2 divides sigma(k).
De Koninck (2000, 2002) asked whether 1 and 1782 are the only numbers k such that rad(k)^2 = sigma(k). - Amiram Eldar, Jan 29 2025

Examples

			rad(96)^2 = 6^2 = 36, sigma(96) = 252 and 36 divides 252.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 102.

Crossrefs

Subsequence of A175200.

Programs

  • Maple
    for n from 1 to 2000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if irem(sigma(n),t2^2) = 0 then print (n): else fi: od :
  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p^2 * (p-1)); q[k_] := IntegerQ[Times @@ f @@@ FactorInteger[k]]; q[1] = True; Select[Range[3*10^6], q] (* Amiram Eldar, Jan 29 2025 *)
  • PARI
    isok(n) = my(f=factor(n)); (sigma(f) % factorback(f[, 1])^2) == 0; \\ Michel Marcus, Nov 09 2020

Extensions

a(30)-a(35) from Donovan Johnson, Jan 14 2012