cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173618 Numbers k such that tau(phi(k)) = rad(k).

Original entry on oeis.org

1, 4, 36, 54, 96, 200, 448, 1280, 2700, 4500, 5103, 9720, 11264, 14112, 14580, 17280, 26624, 32928, 48000, 54432, 71442, 75000, 81648, 152064, 184320, 187500, 258048, 307200, 350000, 637875, 1250235, 1344560, 1557504, 2044416, 2187500, 2367488, 3234816
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(k) is the product of the primes dividing k (A007947), tau(k) is the number of divisors of k (A000005), phi(k) is the Euler totient function (A000010).

Examples

			phi(4) = 2, tau(2) = 2 and rad(4) = 2 phi(36) = 12, tau(12) = 6 and rad(36) = 6
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if tau(phi(n))= t2 then print (n): else fi: od :
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[10^5], DivisorSigma[0, EulerPhi[#]] == rad[#] &] (* Amiram Eldar, Jul 09 2019*)
  • PARI
    isok(k) = numdiv(eulerphi(k)) == factorback(factorint(k)[, 1]); \\ Michel Marcus, Jul 09 2019

Formula

k such that A062821(k) = A007947(k).

Extensions

a(30)-a(37) from Donovan Johnson, Jul 27 2011