cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173623 Decimal expansion of Pi*log(2)/2.

Original entry on oeis.org

1, 0, 8, 8, 7, 9, 3, 0, 4, 5, 1, 5, 1, 8, 0, 1, 0, 6, 5, 2, 5, 0, 3, 4, 4, 4, 4, 9, 1, 1, 8, 8, 0, 6, 9, 7, 3, 6, 6, 9, 2, 9, 1, 8, 5, 0, 1, 8, 4, 6, 4, 3, 1, 4, 7, 1, 6, 2, 8, 9, 7, 6, 2, 6, 5, 9, 7, 1, 5, 4, 2, 7, 4, 5, 8, 8, 3, 7, 0, 9, 9, 3, 2, 1, 5, 1, 6, 4, 4, 8, 0, 8, 0, 5, 3, 3, 1, 5, 1, 2, 5, 2, 8, 8, 0
Offset: 1

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Examples

			1.08879304515180106525034444...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.3, p. 22.
  • Paul J. Nahin, Inside Interesting Integrals, Springer 2015, ISBN 978-1493912766.

Crossrefs

Programs

  • Maple
    Pi/2*log(2) ; evalf(%) ;
  • Mathematica
    RealDigits[Pi*Log[2]/2, 10, 100][[1]] (* Amiram Eldar, Jul 13 2020 *)
  • PARI
    Pi*log(2)/2 \\ Stefano Spezia, Oct 21 2024

Formula

Equals abs(Integral_{x=0..Pi/2} log(sin(x)) dx).
Equals A086054 / 2.
From Amiram Eldar, Jul 13 2020: (Start)
Equals Sum_{k>=0} binomial(2*k,k)/(4^k*(2*k+1)^2) = Sum_{k>=0} A000984(k)/A164583(k).
Equals Integral_{x=0..1} arcsin(x)/x dx.
Equals Integral_{x=0..Pi/2} x*cot(x) dx. (End)
Equals Integral_{x = 0..1} log(x + 1/x)/(1 + x^2) dx (Nahin, 2.4.4) = (1/2)*Integral_{x = 0..oo} log(x^2 + 4)/(x^2 + 4) dx = (1/2)*Integral_{x = 0..oo} log(x^2 + 1)/(x^2 + 1) dx = Integral_{x = 0..oo} log(x^2 + 64)/(x^2 + 64) dx. - Peter Bala, Jul 22 2022
Equals 3F2(1/2,1/2,1/2 ; 3/2,3/2 ; 1). - R. J. Mathar, Aug 19 2024