A173638 The n-th semiprime plus n gives a palindrome in base 10.
1, 2, 11, 17, 20, 23, 25, 35, 40, 48, 53, 59, 69, 86, 94, 100, 128, 133, 138, 141, 145, 194, 211, 216, 224, 232, 282, 326, 450, 615, 665, 824, 876, 929, 1171, 1197, 1267, 1290, 1293, 1450, 1498, 1520, 1566, 1655, 1790, 1898, 2248, 2313, 2624, 2786, 2826, 2849, 2912, 3058, 3082, 3098, 3270, 3290, 3408, 3586, 3610, 3672, 3792, 3912, 3945, 3982, 4000
Offset: 1
Examples
a(1) = 1 because 1st semiprime = 4, 4+1=5 is trivially a palindrome. a(2) = 2 because 2nd semiprime = 6, 6+2=8 is trivially a palindrome. a(3) = 11 because 11th semiprime = 33, 33+11=44 is nontrivially a palindrome. a(4) = 17 because 17th semiprime = 49, 49+17=66 is nontrivially a palindrome. a(5) = 20 because 20th semiprime = 57, 57+20=77 is nontrivially a palindrome. a(8) = 35 because 35th semiprime = 106, 106+35=141 is nontrivially a palindrome.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Module[{nn=20000,sems},sems=Select[Range[nn],PrimeOmega[#]==2&]; Select[ Thread[{Range[Length[sems]],sems}],Total[ #]==IntegerReverse[Total[ #]]&]] [[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 08 2016 *)
Comments