A173641 Primes p such that p^2+4 and p^2-6 are both prime.
3, 5, 7, 13, 17, 47, 67, 73, 97, 167, 193, 293, 317, 373, 463, 487, 503, 593, 607, 677, 787, 823, 827, 1087, 1613, 1637, 1987, 2477, 2543, 2687, 2777, 2833, 2903, 2957, 3023, 3583, 3593, 3917, 4093
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(4100) | IsPrime(p^2+4)and IsPrime(p^2-6)]; // Vincenzo Librandi, Apr 16 2013
-
Mathematica
Select[Prime[Range[800]], PrimeQ[#^2 + 4]&& PrimeQ[#^2 - 6]&] (* Vincenzo Librandi, Apr 16 2013 *)
-
Sage
A173641 = list(p for p in primes(10^5) if is_prime(p^2+4) and is_prime(p^2-6))
Extensions
Corrected and extended by D. S. McNeil, Nov 24 2010
Comments