cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380463 Partial sums of floor(n^2/13).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89, 108, 130, 154, 181, 211, 244, 281, 321, 365, 413, 465, 521, 581, 645, 714, 787, 865, 948, 1036, 1130, 1229, 1334, 1445, 1562, 1685, 1814, 1949, 2091, 2239, 2394, 2556, 2725, 2902, 3086, 3278, 3478
Offset: 0

Views

Author

Hoang Xuan Thanh, Jun 22 2025

Keywords

Examples

			a(9) = 0+0+0+0+1+1+2+3+4+6 = 17.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, 3,-1}, {0, 0, 0, 0, 1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89}, 60]
  • PARI
    a(n)=(2*n^3+3*n^2-35*n+48)\78 - ((n+6)%13<6)
    
  • SageMath
    (((x^4+x^9)*(1-x+x^2))/((1-x)^3*(1-x^13))).series(x, 52).coefficients(x, sparse=False) # Stefano Spezia, Jun 23 2025

Formula

G.f.: ((x^4+x^9)*(1-x+x^2))/((1-x)^3*(1-x^13)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-13) - 3*a(n-14) + 3*a(n-15) - a(n-16).
a(n) = floor((2*n^3 + 3*n^2 - 35*n + 48)/78) - [(n+6 mod 13)<6].
Showing 1-1 of 1 results.