A173661 Logarithmic derivative of the squares of the Fibonacci numbers (A007598, with offset).
1, 7, 16, 47, 121, 322, 841, 2207, 5776, 15127, 39601, 103682, 271441, 710647, 1860496, 4870847, 12752041, 33385282, 87403801, 228826127, 599074576, 1568397607, 4106118241, 10749957122, 28143753121, 73681302247, 192900153616, 505019158607
Offset: 1
Keywords
Examples
G.f.: L(x) = x + 7*x^2/2 + 16*x^3/3 + 47*x^4/4 + 121*x^5/5 +... exp(L(x)) = 1 + x + 2^2*x^2 + 3^2*x^3 + 5^2*x^4 + 8^2*x^5 +...
Programs
-
PARI
{a(n)=(fibonacci(n-1)+fibonacci(n+1))^2-2*((n-1)%2)}
-
PARI
{a(n)=polcoeff(deriv(log(sum(m=0,n,fibonacci(m)^2*x^m)+x*O(x^n))),n)}
-
PARI
{a(n)=polcoeff(x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2+x*O(x^n))),n)}
Formula
a(n) = Lucas(n)^2 for odd n, a(n) = Lucas(n)^2 - 2 for even n>0.
O.g.f.: x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2)).
Comments