cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173661 Logarithmic derivative of the squares of the Fibonacci numbers (A007598, with offset).

Original entry on oeis.org

1, 7, 16, 47, 121, 322, 841, 2207, 5776, 15127, 39601, 103682, 271441, 710647, 1860496, 4870847, 12752041, 33385282, 87403801, 228826127, 599074576, 1568397607, 4106118241, 10749957122, 28143753121, 73681302247, 192900153616, 505019158607
Offset: 1

Views

Author

Paul D. Hanna, Nov 24 2010

Keywords

Comments

The Lucas numbers (A000032) forms the logarithmic derivative of the Fibonacci numbers (A000045).

Examples

			G.f.: L(x) = x + 7*x^2/2 + 16*x^3/3 + 47*x^4/4 + 121*x^5/5 +...
exp(L(x)) = 1 + x + 2^2*x^2 + 3^2*x^3 + 5^2*x^4 + 8^2*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=(fibonacci(n-1)+fibonacci(n+1))^2-2*((n-1)%2)}
    
  • PARI
    {a(n)=polcoeff(deriv(log(sum(m=0,n,fibonacci(m)^2*x^m)+x*O(x^n))),n)}
    
  • PARI
    {a(n)=polcoeff(x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2+x*O(x^n))),n)}

Formula

a(n) = Lucas(n)^2 for odd n, a(n) = Lucas(n)^2 - 2 for even n>0.
O.g.f.: x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2)).