A173675 Let d_1, d_2, d_3, ..., d_tau(n) be the divisors of n; a(n) = number of permutations p of d_1, d_2, d_3, ..., d_tau(n) such that p_(i+1)/p_i is a prime or 1/prime for i = 1,2,...,tau(n)-1 and p_1 <= p_tau(n).
1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 8, 1, 4, 4, 1, 1, 8, 1, 8, 4, 4, 1, 14, 1, 4, 1, 8, 1, 72, 1, 1, 4, 4, 4, 20, 1, 4, 4, 14, 1, 72, 1, 8, 8, 4, 1, 22, 1, 8, 4, 8, 1, 14, 4, 14, 4, 4, 1, 584, 1, 4, 8, 1, 4, 72, 1, 8, 4, 72, 1, 62, 1, 4, 8, 8, 4, 72, 1, 22, 1, 4
Offset: 1
Keywords
Examples
a(1) = 1: [1]. a(2) = 1: [1,2]. a(6) = 4: [1,2,6,3], [1,3,6,2], [2,1,3,6], [3,1,2,6]. a(12) = 8: [1,2,4,12,6,3], [1,3,6,2,4,12], [1,3,6,12,4,2], [2,1,3,6,12,4], [3,1,2,4,12,6], [3,1,2,6,12,4], [4,2,1,3,6,12], [6,3,1,2,4,12].
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2048
- V. Shevelev, Combinatorial minors of matrix functions and their applications, arXiv:1105.3154 [math.CO], 2011-2014.
- V. Shevelev, Combinatorial minors of matrix functions and their applications, Zesz. Nauk. PS., Mat. Stosow., Zeszyt 4, pp. 5-16. (2014).
- Robert G. Wilson v, Re: A combinatorial problem, SeqFan (Aug 02 2010)
Crossrefs
Programs
-
Maple
with(numtheory): q:= (i, j)-> is(i/j, integer) and isprime(i/j): b:= proc(s, l) option remember; `if`(s={}, 1, add( `if`(q(l, j) or q(j, l), b(s minus{j}, j), 0), j=s)) end: a:= proc(n) option remember; ((s-> add(b(s minus {j}, j), j=s))(divisors(n)))/`if`(n>1, 2, 1) end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 26 2017
-
Mathematica
b[s_, l_] := b[s, l] = If[s == {}, 1, Sum[If[PrimeQ[l/j] || PrimeQ[j/l], b[s ~Complement~ {j}, j], 0], {j, s}]]; a[n_] := a[n] = Function[s, Sum[b[s ~Complement~ {j}, j], {j, s}]][ Divisors[n]] / If[n > 1, 2, 1]; Array[a, 100] (* Jean-François Alcover, Nov 28 2017, after Alois P. Heinz *)
Formula
From Andrew Howroyd, Oct 26 2019: (Start)
a(p^e) = 1 for prime p.
Extensions
Alois P. Heinz corrected and clarified the definition and provided more terms. - Nov 07 2014
Comments