cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173703 Composite numbers n with the property that phi(n) divides (n-1)^2.

Original entry on oeis.org

561, 1105, 1729, 2465, 6601, 8481, 12801, 15841, 16705, 19345, 22321, 30889, 41041, 46657, 50881, 52633, 71905, 75361, 88561, 93961, 115921, 126673, 162401, 172081, 193249, 247105, 334153, 340561, 378561, 449065, 460801, 574561, 656601, 658801, 670033
Offset: 1

Views

Author

Keywords

Comments

All terms are odd because if n is even, (n-1)^2 is odd and phi(n) is even for n > 2. - Donovan Johnson, Sep 08 2013
McNew showed that the number of terms in this sequence below x is O(x^(6/7)). - Tomohiro Yamada, Sep 28 2020

Examples

			a(1) = 561 is in the sequence because 560^2 = phi(561)*980 = 320*980 = 313600.
		

Crossrefs

Cf. A238574 (k-Lehmer numbers for some k).

Programs

  • Maple
    isA173703 := proc(n)
        n <> 1 and not isprime(n) and (modp( (n-1)^2, numtheory[phi](n)) = 0 );
    end proc:
    for n from 1 to 10000 do
        if isA173703(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Nov 06 2017
  • Mathematica
    Union[Table[If[PrimeQ[n] === False && IntegerQ[(n-1)^2/EulerPhi[n]], n], {n, 3, 100000}]]
    Select[Range[700000],CompositeQ[#]&&Divisible[(#-1)^2,EulerPhi[#]]&] (* Harvey P. Dale, Nov 29 2014 *)
    Select[Range[1,700000,2],CompositeQ[#]&&PowerMod[#-1,2,EulerPhi[ #]] == 0&] (* Harvey P. Dale, Aug 10 2021 *)
  • PARI
    N=10^9;
    default(primelimit,N);
    ct = 0;
    { for (n=4, N,
        if ( ! isprime(n),
            if ( ( (n-1)^2 % eulerphi(n) ) == 0,
                ct += 1;
                print(ct," ",n);
            );
        );
    ); }
    /* Joerg Arndt, Jun 23 2012 */