cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A238574 k-Lehmer numbers: composite integers n such that phi(n) | (n-1)^k.

Original entry on oeis.org

15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 561, 595, 679, 703, 763, 771, 949, 1105, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1729, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2465, 2509, 2701, 2761, 2821, 2955, 3031, 3097, 3145, 3277
Offset: 1

Views

Author

Keywords

Comments

Composite numbers in A187731.
J. M. Grau and A. M. Oller-Marcén showed that all terms of this sequence are terms of A003277 (cyclic numbers) and this sequence contains all terms of A002997 (Carmichael numbers). - Tomohiro Yamada, Sep 28 2020

Examples

			2^3*3^2 = 72 = phi(91) divides (91-1)^3 = (2*3^2*5)^3 implies 91 is a 3-Lehmer number.
		

Crossrefs

Cf. A187731 (numbers n such that rad(phi(n)) divides n-1).
Cf. A173703 (2-Lehmer numbers; i.e., phi(n) divides (n-1)^2).
Cf. A234936 (smallest composite n-Lehmer number which is not an (n-1)-Lehmer number).
Cf. A207080 (minimum Carmichael number which is not an n-Lehmer number).
Cf. A234958 (number of k-Lehmer numbers up to 10^n).
Cf. A238575 (k-Lehmer numbers with two prime factors).

Programs

  • Mathematica
    rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[1+Range[1000], !PrimeQ[#]&&Mod[#-1, rad[EulerPhi[#]]]==0&]
  • PARI
    is(n)=my(p=eulerphi(n),g=n); if(isprime(n),return(0),n--); while((g=gcd(p,g))>1, p/=g); p==1 && n \\ Charles R Greathouse IV, Mar 03 2014

A234936 a(n) is the smallest composite n-Lehmer number.

Original entry on oeis.org

561, 15, 451, 51, 679, 255, 2091, 771, 43435, 3855, 31611, 13107, 272163, 65535, 494211, 196611, 2089011, 983055, 8061051, 3342387, 31580931, 16711935, 126027651, 50529027, 756493591, 252645135, 4446487299, 858993459, 8053383171, 4294967295, 32212942851
Offset: 2

Views

Author

Giovanni Resta, Jan 01 2014

Keywords

Comments

A number n is a k-Lehmer number if there exists a k such that phi(n) divides (n-1)^k, but not (n-1)^(k-1). The existence of a composite 1-Lehmer number is deemed improbable.

Examples

			a(3) = 15 because 15 is the smallest n such that phi(n) divides (n-1)^3 and does not divide (n-1)^2, i.e., it is the smallest 3-Lehmer number.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = For[k = 2, True, k++, If[CompositeQ[k], phi = EulerPhi[k]; If[Divisible[(k-1)^n, phi], If[!Divisible[(k-1)^(n-1), phi], Return[k] ]]]]; Table[Print[n, " ", a[n]]; a[n], {n, 2, 20}] (* Jean-François Alcover, Jan 26 2019 *)
  • PARI
    a(n) = {x = 2; while (!(!((x-1)^n % eulerphi(x)) && ((x-1)^(n-1) % eulerphi(x))), x++); x;} \\ Michel Marcus, Jan 26 2014

A207080 The smallest Carmichael number k such that phi(k) does not divide (k-1)^n, where phi is the Euler totient function.

Original entry on oeis.org

561, 2821, 838201, 41471521, 45496270561, 776388344641, 344361421401361, 375097930710820681, 330019822807208371201, 4971170854788923506051
Offset: 1

Views

Author

Keywords

Comments

Conjecture: phi(a(n)) divides (a(n)-1)^(n+1).
a(10) <= 9645020063586019926451. - Daniel Suteu, Dec 25 2020

Crossrefs

Cf. A000010, A002997 (Carmichael numbers), A173703.

Programs

  • PARI
    is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1; }
    isok(k, n) = ((k-1)^n % eulerphi(k)) != 0;
    a(n) = my(k=1); while (!(is_c(k) && isok(k,n)), k++); k; \\ Michel Marcus, Dec 25 2020

Extensions

a(7)-a(9) from Richard Pinch, Feb 18 2012
a(10) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 20 2024

A234958 Number of composite k-Lehmer numbers up to 10^n.

Original entry on oeis.org

0, 4, 19, 103, 422, 1559, 5645, 19329, 64040, 207637, 663845, 2103055
Offset: 1

Views

Author

Giovanni Resta, Jan 01 2014

Keywords

Comments

A number n is a k-Lehmer number if there exist a k such that phi(n) divides (n-1)^k.
The values of a(10) and a(11) computed by N. McNew in the linked paper are smaller than mine. I provide a link to my full list so that it could be independently checked.

Examples

			There are 4 k-Lehmer numbers up to 10^2, namely 15, 51, 85, and 91, so a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    kLQ[n_] := n > 1 && ! PrimeQ[n] && Mod[n-1, Times @@ First /@ FactorInteger@ EulerPhi@n] == 0; Table[Length@ Select[Range[2, 10^k], kLQ], {k, 6}]

A337316 Composite numbers k such that phi(k) divides d*(k - 1) for some squarefree divisor d of k - 1.

Original entry on oeis.org

1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, 26906881, 30240001, 34479361, 36426241, 45318561, 48188161, 49871361, 61485601, 107714881, 170947105, 178312321, 193708801, 393760321, 446569201, 475683841, 740376001, 781347841, 878169601, 987275521, 1022304361
Offset: 1

Views

Author

Tomohiro Yamada, Sep 28 2020

Keywords

Comments

All terms of this sequence are terms of A173703 (2-Lehmer numbers) and all Lehmer numbers (if there are any) are contained in this sequence.

Examples

			phi(247105) = 194688 divides 2 * 13 * 247104.
		

Crossrefs

Cf. A173703 (2-Lehmer numbers), A238574 (k-Lehmer numbers for some k).
Cf. A000010 (phi), A005117 (squarefree numbers).

Programs

  • Mathematica
    divQ[n_] := AnyTrue[Select[Divisors[n - 1], SquareFreeQ]*(n - 1), Divisible[#, EulerPhi[n]] &]; Select[Range[250000], CompositeQ[#] && divQ[#] &] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    is(n)={my(s=denominator((n-1)/eulerphi(n))); !isprime(n) && issquarefree(s) && ((n-1)%s==0) && n>1}
    { forcomposite(n=1, 2^28, if(is(n), print1(n, ", "))) }

Extensions

More terms from Amiram Eldar, Oct 14 2020

A277366 Composite numbers k such that phi(k)*lambda(k) divides (k-1)^2, where phi(k) = A000010(k) and lambda(k) = A002322(k).

Original entry on oeis.org

1729, 670033, 6840001, 83099521, 193708801, 321197185, 367804801, 484662529, 1752710401, 2320690177, 5064928705, 12820178449, 32220147601, 257124585601, 270177600001, 301036080385, 7043394657601, 13237329899521, 14276860416001, 85661522006401, 119377939968001
Offset: 1

Views

Author

Thomas Ordowski, Oct 11 2016

Keywords

Comments

Are there infinitely many such numbers?
Such k must be a Carmichael number since phi(k)*lambda(k) = m*lambda(k)^2 for some integer m. - Nathan McNew, Oct 11 2016

Crossrefs

Subsequence of A002997 and of A173703.

Programs

  • Mathematica
    Select[Range[10^8], CompositeQ[#] && Divisible[(# - 1)^2, EulerPhi[#] * CarmichaelLambda[#]] &] (* Amiram Eldar, Feb 02 2019 *)
  • PARI
    lista(nn) = forcomposite(n=4, nn, if (((n-1)^2 % (eulerphi(n)*lcm(znstar(n)[2]))) == 0, print1(n, ", "));); \\ Michel Marcus, Oct 11 2016
    
  • PARI
    is(n,f=factor(n))=(n-1)^2%(eulerphi(f)*lcm(znstar(f)[2])) == 0 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 11 2016

Extensions

a(2)-a(3) from Michel Marcus, Oct 11 2016
a(4)-a(8) from Charles R Greathouse IV, Oct 11 2016
a(9)-a(13) from David A. Corneth, Oct 11 2016
More terms from Amiram Eldar, Feb 02 2019

A306338 Carmichael numbers k such that phi(k) divides (k-1)*lambda(k).

Original entry on oeis.org

561, 1105, 1729, 2465, 6601, 15841, 41041, 46657, 52633, 75361, 115921, 334153, 340561, 658801, 670033, 2455921, 2704801, 4903921, 5049001, 6049681, 6840001, 8355841, 9439201, 9582145, 9613297, 10402561, 11119105, 11205601, 11972017, 14469841, 15888313, 16778881
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Feb 08 2019

Keywords

Comments

Carmichael numbers k such that A034380(k) divides k-1.
A proper subset of Carmichael numbers in A173703.
The number of terms below 10^k for k=1,2,...,18 is 0, 0, 1, 5, 10, 15, 25, 56, 101, 184, 310, 508, 814, 1265, 1964, 2990, 4486, 6704. Cf. A055553.
Composite numbers k such that lcm(lambda(k),phi(k)/lambda(k)) divides k-1.
Problem: are there infinitely many such numbers?

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 100000, 2], !PrimeQ[#] && Divisible[#-1, c = CarmichaelLambda[#]] && Divisible[c*(#-1), EulerPhi[#]] &]

A338998 Composite numbers k such that phi(k) divides p*(k - 1) for some prime factor p of k - 1.

Original entry on oeis.org

1729, 12801, 5079361, 34479361, 3069196417, 23915494401
Offset: 1

Views

Author

Tomohiro Yamada, Nov 18 2020

Keywords

Comments

All terms of this sequence are terms of A337316 and all Lehmer numbers (if there are any) are contained in this sequence.
Terms 1729 and 3069196417 and several others are also Carmichael numbers (A002997), they are given in A339878.
The sequence also includes: 1334063001601, 6767608320001, 33812972024833, 380655711289345, 1584348087168001, 1602991137369601, 6166793784729601, 1531757211193440001. - Daniel Suteu, Nov 24 2020
Apparently, a(n) == 1 (mod 64). - Hugo Pfoertner, Dec 08 2020
The "Lehmer numbers" above refers to composite 1-Lehmer numbers, that is, numbers n that would satisfy the equation y * phi(n) = n-1, for some integer y > 1. Lehmer conjectured that no such numbers exist. See the assorted Web-links. - Antti Karttunen, Dec 26 2020

Examples

			phi(1729) = 1296 divides 3 * 1728.
		

Crossrefs

Subsequence of A173703 (2-Lehmer numbers).
Cf. A337316 (with "squarefree divisor" instead of "prime factor").
Cf. A000010 (phi), A238574 (k-Lehmer numbers for some k), A339878 (Carmichael numbers in this sequence).

Programs

  • PARI
    is(n)={my(s=denominator((n-1)/eulerphi(n))); !isprime(n) && isprime(s) && ((n-1)%s==0) && n>1}
    { forcomposite(n=1, 2^32, if(is(n), print1(n, ", "))) }

Extensions

a(5) from Amiram Eldar, Nov 18 2020
a(6) from Daniel Suteu, confirmed by Max Alekseyev, Sep 29 2023
Showing 1-8 of 8 results.