cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A238574 k-Lehmer numbers: composite integers n such that phi(n) | (n-1)^k.

Original entry on oeis.org

15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 561, 595, 679, 703, 763, 771, 949, 1105, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1729, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2465, 2509, 2701, 2761, 2821, 2955, 3031, 3097, 3145, 3277
Offset: 1

Views

Author

Keywords

Comments

Composite numbers in A187731.
J. M. Grau and A. M. Oller-Marcén showed that all terms of this sequence are terms of A003277 (cyclic numbers) and this sequence contains all terms of A002997 (Carmichael numbers). - Tomohiro Yamada, Sep 28 2020

Examples

			2^3*3^2 = 72 = phi(91) divides (91-1)^3 = (2*3^2*5)^3 implies 91 is a 3-Lehmer number.
		

Crossrefs

Cf. A187731 (numbers n such that rad(phi(n)) divides n-1).
Cf. A173703 (2-Lehmer numbers; i.e., phi(n) divides (n-1)^2).
Cf. A234936 (smallest composite n-Lehmer number which is not an (n-1)-Lehmer number).
Cf. A207080 (minimum Carmichael number which is not an n-Lehmer number).
Cf. A234958 (number of k-Lehmer numbers up to 10^n).
Cf. A238575 (k-Lehmer numbers with two prime factors).

Programs

  • Mathematica
    rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[1+Range[1000], !PrimeQ[#]&&Mod[#-1, rad[EulerPhi[#]]]==0&]
  • PARI
    is(n)=my(p=eulerphi(n),g=n); if(isprime(n),return(0),n--); while((g=gcd(p,g))>1, p/=g); p==1 && n \\ Charles R Greathouse IV, Mar 03 2014

A234958 Number of composite k-Lehmer numbers up to 10^n.

Original entry on oeis.org

0, 4, 19, 103, 422, 1559, 5645, 19329, 64040, 207637, 663845, 2103055
Offset: 1

Views

Author

Giovanni Resta, Jan 01 2014

Keywords

Comments

A number n is a k-Lehmer number if there exist a k such that phi(n) divides (n-1)^k.
The values of a(10) and a(11) computed by N. McNew in the linked paper are smaller than mine. I provide a link to my full list so that it could be independently checked.

Examples

			There are 4 k-Lehmer numbers up to 10^2, namely 15, 51, 85, and 91, so a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    kLQ[n_] := n > 1 && ! PrimeQ[n] && Mod[n-1, Times @@ First /@ FactorInteger@ EulerPhi@n] == 0; Table[Length@ Select[Range[2, 10^k], kLQ], {k, 6}]

A254352 a(n) is the least composite x such that sigma(x) divides (x-1)^n but not (x-1)^(n-1), for n >= 2.

Original entry on oeis.org

385, 21, 93, 235, 2899, 903, 1771, 3619, 651, 11935, 2667, 48895, 11811, 27559, 415555, 848995, 172011, 3153535, 761763, 1777447, 2752491, 7281799, 11010027, 28442407, 48758691, 113770279, 199753347, 466091143, 677207307, 2064117919, 3220807683, 7515217927
Offset: 2

Views

Author

Paolo P. Lava, Jan 30 2015

Keywords

Examples

			sigma(385) = 576; (385 - 1)^2 = 21743271936 and 21743271936 / 576 = 37748736.
sigma(21) = 32; (21 - 1)^3 = 8000 and 8000 / 32 = 250.
sigma(93) = 128; (93 - 1)^4 = 71639296 and 71639296 / 128 = 559682.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,j,k,n; for k from 2 to q do
    for n from 1 to q do if not isprime(n) then
    if type((n-1)^k/sigma(n),integer) then
    if not type((n-1)^(k-1)/sigma(n),integer) then lprint(k,n);
    break; fi; fi; fi; od; od;end: P(10^9);
  • Mathematica
    a[n_] := Module[{k=4, s=7}, While[PrimeQ[k] || !(PowerMod[k-1, n, s] == 0 && PowerMod[k-1, n-1, s] > 0), k++; s=DivisorSigma[1, k]]; k]; Array[a, 11, 2] (* Amiram Eldar, Apr 08 2019 *)
  • PARI
    a(n) = {x = 4; sx = sigma(x); while(! (((x-1)^(n-1) % sx) && !((x-1)^n % sx)), x++; while (isprime(x), x++); sx = sigma(x)); x;} \\ Michel Marcus, Jan 30 2015
    
  • PARI
    isok(x, n) = my(sx=sigma(x)); (((x-1)^(n-1) % sx) && !((x-1)^n % sx));
    a(n) = forcomposite(x=4, , if (isok(x, n), return(x))); \\ Michel Marcus, Apr 08 2019

Extensions

a(22)-a(33) from Amiram Eldar, Apr 08 2019

A254409 a(n) is the least x such that tau(x) divides (x-1)^n but not (x-1)^(n-1), for n >= 2.

Original entry on oeis.org

15, 135, 1155, 10395, 135135, 2297295, 57432375, 1003917915, 25097947875
Offset: 2

Views

Author

Paolo P. Lava, Jan 30 2015

Keywords

Comments

So far, all terms appear to be multiples of 15.
It appears that tau(a(n)) is equal to 2^n. For instance, for n=3, a(3)=135 and 135 has 2^3=8 divisors.
The quotients tau(a(n))/(a(n)-1)^n are: 7^2, 67^3, 577^4, 5197^5, 67567^6, 1148647^7, 28716187^8, 501958957^9, ... - Michel Marcus, Feb 13 2015
Assuming that tau(a(n)) is 2^n (which would appear to follow from the minimality of a(n) and the fact that tau(a(n)) must be divisible by an n-th power), a(n)-1 would have to contain a solitary factor of 2, and so a(n) would be the least number congruent to 3 modulo 4 such that tau(a(n)) = 2^n. The next few terms would appear to be a(9)*25, a(9)*25*29, a(9)*25*29*37, a(9)*25*29*31*43, and a(9)*25*29*31*37*43. - Charlie Neder, Aug 19 2018

Examples

			tau(15) = 4; (15 - 1)^2 = 196 and 196 / 4 = 49.
tau(135) = 8; (135 - 1)^3 = 2406104 and 2406104 / 8 = 300763.
tau(1155) = 16; (1155 - 1)^4 = 1773467504656 and 1773467504656 / 16 = 110841719041.
		

Crossrefs

Cf. A000005 (tau(n)), A234936, A254352.

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,j,k,n; for k from 2 to q do
    for n from 1 to q do if not isprime(n) then
    if type((n-1)^k/tau(n),integer) then
    if not type((n-1)^(k-1)/tau(n),integer) then print(n);
    break; fi; fi; fi; od; od;end: P(10^9);
  • PARI
    for(n=2, 10, forcomposite(x=1, , if(Mod((x-1)^n, numdiv(x))==0 && Mod((x-1)^(n-1), numdiv(x))!=0, print1(x, ", "); break({1})))) \\ Felix Fröhlich, Feb 12 2015
    
  • PARI
    isok(k, n) = {my(m = Mod(k-1, numdiv(k))); (m^(n-1) != 0) && (m^n == 0);}
    a(n) = {my(k=2); while(!isok(k, n), k++); k}; \\ Michel Marcus, Aug 20 2018

Extensions

a(8)-a(9) from Felix Fröhlich, Feb 12 2015
a(10) from Amiram Eldar, Jul 02 2023
Showing 1-4 of 4 results.