cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173703 Composite numbers n with the property that phi(n) divides (n-1)^2.

Original entry on oeis.org

561, 1105, 1729, 2465, 6601, 8481, 12801, 15841, 16705, 19345, 22321, 30889, 41041, 46657, 50881, 52633, 71905, 75361, 88561, 93961, 115921, 126673, 162401, 172081, 193249, 247105, 334153, 340561, 378561, 449065, 460801, 574561, 656601, 658801, 670033
Offset: 1

Views

Author

Keywords

Comments

All terms are odd because if n is even, (n-1)^2 is odd and phi(n) is even for n > 2. - Donovan Johnson, Sep 08 2013
McNew showed that the number of terms in this sequence below x is O(x^(6/7)). - Tomohiro Yamada, Sep 28 2020

Examples

			a(1) = 561 is in the sequence because 560^2 = phi(561)*980 = 320*980 = 313600.
		

Crossrefs

Cf. A238574 (k-Lehmer numbers for some k).

Programs

  • Maple
    isA173703 := proc(n)
        n <> 1 and not isprime(n) and (modp( (n-1)^2, numtheory[phi](n)) = 0 );
    end proc:
    for n from 1 to 10000 do
        if isA173703(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Nov 06 2017
  • Mathematica
    Union[Table[If[PrimeQ[n] === False && IntegerQ[(n-1)^2/EulerPhi[n]], n], {n, 3, 100000}]]
    Select[Range[700000],CompositeQ[#]&&Divisible[(#-1)^2,EulerPhi[#]]&] (* Harvey P. Dale, Nov 29 2014 *)
    Select[Range[1,700000,2],CompositeQ[#]&&PowerMod[#-1,2,EulerPhi[ #]] == 0&] (* Harvey P. Dale, Aug 10 2021 *)
  • PARI
    N=10^9;
    default(primelimit,N);
    ct = 0;
    { for (n=4, N,
        if ( ! isprime(n),
            if ( ( (n-1)^2 % eulerphi(n) ) == 0,
                ct += 1;
                print(ct," ",n);
            );
        );
    ); }
    /* Joerg Arndt, Jun 23 2012 */

A238575 k-Lehmer numbers with two prime factors.

Original entry on oeis.org

15, 51, 85, 91, 133, 247, 259, 451, 481, 511, 679, 703, 763, 771, 949, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1843, 1891, 2047, 2071, 2119, 2509, 2701, 2761, 3031, 3097, 3277, 3409, 3589, 3667, 4033, 4039, 4141, 4369, 4411, 4681, 5383, 5461, 5611, 5629
Offset: 1

Views

Author

Keywords

Comments

The first terms which are == 0 (mod 3) are 15, 51, 771, 196611, which are equal to 3*(5, 17, 257, 65537) = 3*(2^2+1, 2^4+1, 2^8+1, 2^16+1), i.e., 3 times the Fermat primes > 3. No other exceptions below 10^9. - Giovanni Resta

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; Select[1 + \
    Range[10000], Length[FactorInteger[#]] == 2 && Mod[# - 1,
       rad[EulerPhi[#]]] == 0 &]

A337316 Composite numbers k such that phi(k) divides d*(k - 1) for some squarefree divisor d of k - 1.

Original entry on oeis.org

1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, 26906881, 30240001, 34479361, 36426241, 45318561, 48188161, 49871361, 61485601, 107714881, 170947105, 178312321, 193708801, 393760321, 446569201, 475683841, 740376001, 781347841, 878169601, 987275521, 1022304361
Offset: 1

Views

Author

Tomohiro Yamada, Sep 28 2020

Keywords

Comments

All terms of this sequence are terms of A173703 (2-Lehmer numbers) and all Lehmer numbers (if there are any) are contained in this sequence.

Examples

			phi(247105) = 194688 divides 2 * 13 * 247104.
		

Crossrefs

Cf. A173703 (2-Lehmer numbers), A238574 (k-Lehmer numbers for some k).
Cf. A000010 (phi), A005117 (squarefree numbers).

Programs

  • Mathematica
    divQ[n_] := AnyTrue[Select[Divisors[n - 1], SquareFreeQ]*(n - 1), Divisible[#, EulerPhi[n]] &]; Select[Range[250000], CompositeQ[#] && divQ[#] &] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    is(n)={my(s=denominator((n-1)/eulerphi(n))); !isprime(n) && issquarefree(s) && ((n-1)%s==0) && n>1}
    { forcomposite(n=1, 2^28, if(is(n), print1(n, ", "))) }

Extensions

More terms from Amiram Eldar, Oct 14 2020

A333314 Composite non-Carmichael numbers k such that rad(phi(k)) divides k-1, where rad(k) is the squarefree kernel of k (A007947) and phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 51, 85, 91, 133, 247, 255, 259, 435, 451, 481, 511, 595, 679, 703, 763, 771, 949, 1111, 1141, 1261, 1285, 1351, 1387, 1417, 1615, 1695, 1843, 1891, 2047, 2071, 2091, 2119, 2431, 2509, 2701, 2761, 2955, 3031, 3097, 3145, 3277, 3367, 3409, 3589, 3655, 3667
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2020

Keywords

Comments

McNew and Wright proved that this sequence is infinite.

Examples

			15 = 3 * 5 is a term since it is composite and not a Carmichael number, and rad(phi(15)) = rad(8) = 2 divides 15 - 1 = 14.
		

Crossrefs

Complement of the primes and Carmichael numbers (union of A000010 and A002997) with respect to A187731.
Complement of A002997 with respect to A238574.

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[4000], Divisible[#-1, rad[EulerPhi[#]]] && !Divisible[#-1, CarmichaelLambda[#]] &]

A338998 Composite numbers k such that phi(k) divides p*(k - 1) for some prime factor p of k - 1.

Original entry on oeis.org

1729, 12801, 5079361, 34479361, 3069196417, 23915494401
Offset: 1

Views

Author

Tomohiro Yamada, Nov 18 2020

Keywords

Comments

All terms of this sequence are terms of A337316 and all Lehmer numbers (if there are any) are contained in this sequence.
Terms 1729 and 3069196417 and several others are also Carmichael numbers (A002997), they are given in A339878.
The sequence also includes: 1334063001601, 6767608320001, 33812972024833, 380655711289345, 1584348087168001, 1602991137369601, 6166793784729601, 1531757211193440001. - Daniel Suteu, Nov 24 2020
Apparently, a(n) == 1 (mod 64). - Hugo Pfoertner, Dec 08 2020
The "Lehmer numbers" above refers to composite 1-Lehmer numbers, that is, numbers n that would satisfy the equation y * phi(n) = n-1, for some integer y > 1. Lehmer conjectured that no such numbers exist. See the assorted Web-links. - Antti Karttunen, Dec 26 2020

Examples

			phi(1729) = 1296 divides 3 * 1728.
		

Crossrefs

Subsequence of A173703 (2-Lehmer numbers).
Cf. A337316 (with "squarefree divisor" instead of "prime factor").
Cf. A000010 (phi), A238574 (k-Lehmer numbers for some k), A339878 (Carmichael numbers in this sequence).

Programs

  • PARI
    is(n)={my(s=denominator((n-1)/eulerphi(n))); !isprime(n) && isprime(s) && ((n-1)%s==0) && n>1}
    { forcomposite(n=1, 2^32, if(is(n), print1(n, ", "))) }

Extensions

a(5) from Amiram Eldar, Nov 18 2020
a(6) from Daniel Suteu, confirmed by Max Alekseyev, Sep 29 2023
Showing 1-5 of 5 results.