cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173836 Natural numbers n such that the concatenation 1331//n^3 is a prime number.

Original entry on oeis.org

21, 27, 29, 41, 101, 119, 141, 171, 173, 177, 191, 197, 219, 243, 267, 291, 309, 327, 333, 369, 371, 383, 411, 417, 1019, 1049, 1059, 1091, 1157, 1163, 1211, 1311, 1337, 1343, 1359, 1371, 1379, 1409, 1461, 1473, 1481, 1503, 1521, 1593, 1599, 1613, 1637
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 26 2010

Keywords

Comments

Given the cube n^3 with k = A111393(n) decimal digits, we have to check whether the concatenation, 11^3 * 10^k + n^3, is a prime.
The number k of digits that 1331=11^3 is shifted is not a multiple of 3,
because the form a^3+b^3 = (a^2+a*b+b^2) * (a - b) cannot construct a prime.

Examples

			21 is in the sequence because 21^3=9261, and the concatenation is 13319261=prime(868687).
27 is in the sequence because 27^3=19683, and the concatenation is 133119683=prime(7545064).
		

References

  • K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 14 2011 *)

Extensions

Comments sligthly rephrased - R. J. Mathar, Mar 05 2010

A173874 Primes in A173836.

Original entry on oeis.org

29, 41, 101, 173, 191, 197, 383, 1019, 1049, 1091, 1163, 1409, 1481, 1613, 1637, 1721, 1823, 1913, 1973, 2027, 2099, 2243, 2339, 2351, 2447, 2729, 2837, 2897, 2999, 3023, 3089, 3137, 3167, 3203, 3251, 3407, 3881, 4019, 4349, 4397, 4451, 4457
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 01 2010

Keywords

Comments

For a prime p and its k-digit cube p^3 we need to check if q = 11^3 * 10^k + p^3 is a prime.
11^3*10^k is congruent to 2 (mod 3), so p^3 must be congruent to 2 (mod 3) because otherwise the sum q cannot become a prime.
In turn, all p in the sequence are also congruent to 2 (mod 3) (see A003627).

Examples

			The prime 29 is in the sequence because 29^3=24389, and the concatenation 133124389=prime(7545294) is a prime number.
		

References

  • K. Haase and P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985

Crossrefs

Programs

  • Maple
    cat2 := proc(a,b) ndgs := max(1, ilog10(b)+1) ; a*10^ndgs+b ; end proc:
    for i from 1 to 800 do p := ithprime(i) ; if isprime(cat2(1331,p^3)) then printf("%d,",p) ; end if; end do: # R. J. Mathar, Mar 26 2010
  • Mathematica
    Select[Prime[Range[2000]],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 14 2011 *)

Extensions

Definition simplified, missing numbers 2243, 2339 etc. inserted, numbers like 2621, 2693 removed - R. J. Mathar, Mar 26 2010
Showing 1-2 of 2 results.