cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173743 Numbers k such that phi(tau(k)) = tau(rad(k)).

Original entry on oeis.org

1, 4, 8, 9, 24, 25, 27, 32, 40, 48, 49, 54, 56, 72, 80, 88, 96, 104, 108, 112, 120, 121, 125, 135, 136, 152, 160, 162, 168, 169, 176, 184, 189, 200, 208, 224, 232, 240, 243, 248, 250, 264, 270, 272, 280, 289, 296, 297, 304, 312, 328, 336, 343, 344, 351, 352, 360
Offset: 1

Views

Author

Michel Lagneau, Feb 23 2010

Keywords

Comments

rad(n) = A007947(n). tau(n) = A000005(n). phi(n) = A000010(n). tau(rad(n)) = A034444(n).

Examples

			For n=4, phi(tau(4)) = phi(3)=2 equals tau(rad(4)) = tau(2) = 2, so n=4 is in the sequence.
For n=108, phi(tau(108) ) = phi(12) = 4 equals tau(rad(108)) = tau(6) = 4, so n =108 is in the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [ k:k in [1..360]| EulerPhi(#Divisors(k)) eq #Divisors(&*PrimeDivisors(k)) ]; // Marius A. Burtea, Jul 09 2019
  • Maple
    with(numtheory): for n from 1 to 500 do :t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)):if phi(tau(n)) = tau(t2) then print (n): else fi:od:
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[360], EulerPhi[ DivisorSigma[0, #] ] == DivisorSigma[0, rad[#]] &] (* Amiram Eldar, Jul 09 2019 *)

Formula

{ n : A163109(n) = A034444(n) }.