A173755 Table read by rows, T(n,k) = (-1)^(n-k)*2^(2*k-bw(k)), where bw(k) is the binary weight of k (A000120).
1, -1, 2, 1, -2, 8, -1, 2, -8, 16, 1, -2, 8, -16, 128, -1, 2, -8, 16, -128, 256, 1, -2, 8, -16, 128, -256, 1024, -1, 2, -8, 16, -128, 256, -1024, 2048, 1, -2, 8, -16, 128, -256, 1024, -2048, 32768, -1, 2, -8, 16, -128, 256, -1024, 2048, -32768, 65536, 1, -2, 8, -16, 128, -256, 1024, -2048, 32768, -65536, 262144
Offset: 0
Examples
Triangle begins: 1; -1, 2; 1, -2, 8; -1, 2, -8, 16; 1, -2, 8, -16, 128; -1, 2, -8, 16, -128, 256; 1, -2, 8, -16, 128, -256, 1024;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A173755:= func< n,k | (-1)^(n-k)*2^(k + Valuation(Factorial(k), 2)) >; [A173755(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 24 2024
-
Maple
A173755 := proc(n,k) local L,i; L := [seq((-1)^i/(2*i+1),i=0..n+k)] ; L := BINOMIAL(L); for i from 1 to n do L := DIFF(L) ; end do: op(1+k,L) ; numer(%) ; end proc: # R. J. Mathar, Sep 22 2011 A173755 := proc(n, k) local w; w := proc(n) option remember; `if`(n=0,1,2^(padic[ordp](2*n,2))*w(n-1)) end: (-1)^(n-k)*w(k) end: for n from 0 to 8 do seq(A173755(n,k),k=0..n) od; # Peter Luschny, Nov 16 2012
-
Mathematica
Table[(-1)^(n - k)*2^(2 k - DigitCount[k, 2, 1]), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 21 2019 *)
-
Sage
def A173755(n,k): A005187 = lambda n: A005187(n//2) + n if n > 0 else 0 return (-1)^(n-k)*2^A005187(k) for n in (0..8): [A173755(n,k) for k in (0..n)] # Peter Luschny, Nov 16 2012
Formula
T(n,k) = (-1)^(n-k)*denom(binomial(-1/2,k)). - Peter Luschny, Nov 21 2012
Extensions
Simpler definition by Peter Luschny, Nov 21 2012
Comments