cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A173855 a(n) = A173039(n+4) - A173039(n+1).

Original entry on oeis.org

8, 4, 24, 40, 12, 56, 72, 20, 88, 104, 28, 120, 136, 36, 152, 168, 44, 184, 200, 52, 216, 232, 60, 248, 264, 68, 280, 296, 76, 312, 328, 84, 344, 360, 92, 376, 392, 100, 408, 424, 108, 440, 456, 116, 472, 488, 124, 504, 520, 132, 536, 552, 140, 568, 584, 148
Offset: 1

Views

Author

Paul Curtz, Nov 26 2010

Keywords

Comments

From Balmer odd terms. Note that ( (a(n+1)=8,) - (Balmer A061037 odd numbers = A173039(n+4) = 5, ) = 3, 1, 3, -5, -3, -21, ... = -A173039.

Examples

			a(1) = 5 - (-3) = 8, a(2) = 3 - (-1) = 4, a(3) = 21 - (-3) = 24.
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2+x+1)^2))); // G. C. Greubel, Sep 20 2018
  • Maple
    a:= LREtools[REtoproc](f(n) = 2*f(n-3)-f(n-6), f(n), zip((s,t)->f(s)=t, [$1..6],[8,4,24,40,12,56]),remember):
    seq(a(n), n=1..100); # Robert Israel, Oct 15 2014
  • Mathematica
    Rest[CoefficientList[Series[4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2 +x+1)^2), {x, 0, 50}], x]] (* G. C. Greubel, Sep 20 2018 *)
  • PARI
    Vec(4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Oct 15 2014
    

Formula

a(n) = 4*A173773(n).
a(n) = 2*a(n-3) - a(n-6). - Colin Barker, Oct 15 2014
G.f.: 4*x*(x+1)*(2*x^4 - x^3 + 7*x^2 - x + 2) / ((x-1)^2*(x^2 + x + 1)^2). - Colin Barker, Oct 15 2014

Extensions

More terms from Colin Barker, Oct 15 2014
Showing 1-1 of 1 results.