A173774 The arithmetic mean of (21*k + 8)*binomial(2*k,k)^3 (k=0..n-1).
8, 120, 3680, 144760, 6427008, 306745824, 15364514880, 796663553400, 42395640372800, 2302336805317120, 127078484504270208, 7108177964254013920, 402042028998035350400, 22954860061516225396800
Offset: 1
Keywords
Examples
For n=2 we have a(2)=120 since (8*binomial(0,0)^3 + (21+8)*binomial(2,1)^3)/2 = 120.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- Kasper Andersen, Re: A somewhat surprising conjecture
- Zhi-Wei Sun, A somewhat surprising conjecture
- Zhi-Wei Sun, Re: A somewhat surprising conjecture
- Zhi-Wei Sun, Open conjectures on congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2011.
- Zhi-Wei Sun, Super congruences and Euler numbers, preprint, arXiv:1001.4453 [math.NT], 2010-2011.
Programs
-
Magma
[(&+[(21*j+8)*(j+1)^3*Catalan(j)^2: j in [0..n-1]])/n: n in [1..30]]; // G. C. Greubel, Jul 06 2021
-
Mathematica
a[n_]:= Sum[(21*k+8)*Binomial[2*k,k]^3, {k,0,n-1}]/n; Table[a[n], {n, 25}]
-
Sage
[(1/n)*sum((21*j+8)*binomial(2*j,j)^3 for j in (0..n-1)) for n in (1..30)] # G. C. Greubel, Jul 06 2021
Formula
a(n) = (1/n)*Sum_{k=0..n-1} (21*k + 8)*binomial(2*k,k)^3.
(n+1)*a(n+1) = n*a(n) + 8*(21*n + 8)*binomial(2*n-1, n)^3, n > 0, with a(1) = 8.
a(n) ~ 2^(6*n) / (3 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Jan 24 2019
a(n) = (1/n)*Sum_{j=0..n-1} (21*j + 8)*(j+1)^3*Catalan(j)^3. - G. C. Greubel, Jul 06 2021
Comments