cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A112029 a(n) = Sum_{k=0..n} binomial(n+k, k)^2.

Original entry on oeis.org

1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
    
  • Maple
    f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
    H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
    ord := 30;
    ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
    # Mark van Hoeij, Mar 27 2013
  • Mathematica
    Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
  • Sage
    [sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
    

Formula

a(n) ~ 2^(4*n+2)/(3*Pi*n). - Vaclav Kotesovec, Nov 23 2012
Recurrence: 2*(2*n+1)*(21*n-13)*n^2*a(n) = (1365*n^4 - 1517*n^3 + 240*n^2 + 216*n - 64)*a(n-1) - 4*(n-1)*(2*n-1)^2*(21*n+8)*a(n-2). - Vaclav Kotesovec, Nov 23 2012
G.f.: see Maple code. - Mark van Hoeij, Mar 27 2013
a(p-1) == 1 (mod p^3) for all primes p >= 5. See the comments in A173774. - Peter Bala, Jul 12 2024
a(n-1) = 1/(4*n) * binomial(2*n, n)^2 * ( 1 + 3*((n - 1)/(n + 1))^3 + 5*((n - 1)*(n - 2)/((n + 1)*(n + 2)))^3 + 7*((n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)))^3 + ... ) for n >= 1. - Peter Bala, Jul 22 2024
a(m*p^r - 1) == a(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and positive integers m and r. See Coster, Theorem 4. - Peter Bala, Nov 29 2024
a(n) = A110197(2n,n). - Alois P. Heinz, Mar 21 2025

A178790 The arithmetic mean of (2*k+1)*A_k (k=0,...,n-1), where A_0,A_1,... are Apery numbers given by A005259.

Original entry on oeis.org

1, 8, 127, 2624, 61501, 1552760, 41186755, 1131614720, 31923047665, 919243356008, 26908963456783, 798379043762624, 23954974906866901, 725620080605773592, 22159617936375571627, 681528994326392115200, 21090805673899997148025, 656256696917886135153800
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 14 2010

Keywords

Comments

Conjecture: the number a(n) = n^(-1)*Sum_{k=0..n-1}(2*k+1)*A_k is always an integer.
We can prove that for any prime p>3 we have a(p)=p (mod p^4).
Conjecture: If p=5,7 (mod 8) is a prime then sum_{k=0}^{p-1}A_k=0 (mod p^2); if p=1,3 (mod 8) is a prime greater than 3 and p=x^2+2y^2 with x,y integers then sum_{k=0}^{p-1}A_k=4x^2-2p (mod p^2).
a(n) is always an integer. The detailed proof can be found in the latest version of arXiv:1006.2776 . - Zhi-Wei Sun, Jun 17 2010

Examples

			For n=3 we have a(3)=(A_0+3A_1+5A_2)/3=(1+3*5+5*73)/3=127.
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> Sum([0..n], k -> Binomial(n-1,k)*Binomial(n+k,k) *Binomial(n+k, 2*k+1)* Binomial(2*k,k) )); # G. C. Greubel, Jan 24 2019
  • Magma
    [(&+[Binomial(n-1,k)*Binomial(n+k,k)*Binomial(n+k, 2*k+1)* Binomial(2*k,k): k in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Jan 24 2019
    
  • Maple
    G := (-1/2)*(3*x-3+(x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3,2/3],[1],(-1/2)*(x^2-7*x+1)*(x+1)^(-3)*(x^2-34*x+1)^(1/2)+(1/2)*(x^3+30*x^2-24*x+1)*(x+1)^(-3))^2;
    ogf := 2*x*G/(1-x)-Int((x+1)*G/(x-1)^2,x);
    series(ogf,x=0,25); # Mark van Hoeij, May 07 2013
  • Mathematica
    Apery[n_]:= Sum[Binomial[n+k,k]^2 Binomial[n,k]^2,{k,0,n}]; AA[n_]:= Sum[(2k+1)*Apery[k],{k,0,n-1}]/n; Table[AA[n],{n,1,25}]
    Table[Sum[(Binomial[n-1,k]*Binomial[n+k,k]*Binomial[n+k,2*k+1]* Binomial[2*k,k]), {k,0,n-1}], {n,1,30}] (* G. C. Greubel, Jan 24 2019 *)
  • PARI
    {a(n) = sum(k=0,n-1, binomial(n-1,k)*binomial(n+k,k)*binomial(n+k, 2*k+1)*binomial(2*k,k))}; \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [sum(binomial(n-1,k)*binomial(n+k,k)*binomial(n+k, 2*k+1)* binomial(2*k,k) for k in (0..n-1)) for n in (1..30)] # G. C. Greubel, Jan 24 2019
    

Formula

Recursion : (n+2)^3 *(n+3) *(2n+1) *a(n+3) = (n+2) *(2n+1) *(35*n^3+193*n^2+345*n+203) *a(n+2) -(n+1) *(2n+5) *(35*n^3+122*n^2+132*n+40) * a(n+1) +n *(n+1)^3 *(2n+5) *a(n).
a(n) = Sum(k=0..n-1, (binomial(n-1,k)* binomial(n+k,k)* binomial(n+k,2*k+1)*binomial(2*k,k)) ). - Zhi-Wei Sun, Jun 17 2010
a(n) = A189766(n) / n = trace( HilbertMatrix(n)^(-1) )/n. - Richard Penner, Jun 04 2011
a(n) = (1/n)*Sum_{k=0..n-1} (2*k+1)*binomial(n+k,2*k+1)^2*binomial(2*k, k)^2. - Richard Penner, Jun 04 2011
G.f.: 2*x*G/(1-x)-Int((x+1)*G/(x-1)^2,x) where G is the generating function of A005259. - Mark van Hoeij, May 07 2013
a(n) ~ 2^(1/4) * (1 + sqrt(2))^(4*n) / (16*(Pi*n)^(3/2)). - Vaclav Kotesovec, Jan 24 2019

A178791 The arithmetic mean of (2k+1)(-1)^k*A_k (k=0,...,n-1), where A_0, A_1,... are Apéry numbers given by A005259.

Original entry on oeis.org

1, -7, 117, -2441, 57449, -1453635, 38609845, -1061792695, 29973352185, -863536596143, 25288254409373, -750531594051981, 22525211241191881, -682459907754004723, 20845409947239778533, -641211780685502724425
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 14 2010

Keywords

Comments

On Jun 14 2010, Zhi-Wei Sun conjectured that the number a(n) = n^{-1}*Sum_{k=0..n-1} (2*k+1)*(-1)^k*A_k is always an integer and that a(p) = p(p/3) (mod p^3) for any prime p>3. He also formulated the following conjecture: If p=1 (mod 3) is a prime and p = x^2 + 3y^2 with x,y integers then Sum_{k=0..p-1} (-1)^k*A_k = 4*x^2 - 2*p (mod p^2); if p=2 (mod 3) is a prime then Sum_{k=0..p-1 }(-1)^k*A_k=0 (mod p^2).

Examples

			For n=3 we have a(3) = (A_0 - 3A_1 + 5A_2)/3 = (1 - 3*5 + 5*73)/3 = 117.
		

Crossrefs

Programs

  • Maple
    G := (-1/2)*(3*x-3+(x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3, 2/3], [1], (-1/2)*(x^2-7*x+1)*(x+1)^(-3)*(x^2-34*x+1)^(1/2)+(1/2)*(x^3+30*x^2 -24*x+1)*(x+1)^(-3))^2;
    ogf := 2*x*G/(x+1)+Int((x-1)*G/(x+1)^2,x);
    series(ogf, x=0, 25);
    series(-subs(x=-x,%), x=0, 25); # Mark van Hoeij, May 07 2013
  • Mathematica
    Apery[n_]:= Sum[Binomial[n+k,k]^2Binomial[n,k]^2,{k,0,n}]; AA[n_]:= Sum[(2k+1)(-1)^k*Apery[k],{k,0,n-1}]/n; Table[AA[n],{n,25}]
  • PARI
    A(n) = sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2); \\ A005259
    a(n) = sum(k=0, n-1, (2*k+1)*(-1)^k*A(k))/n; \\ Michel Marcus, Jan 24 2019

Formula

G.f.: apart from the minus signs (just replace x by -x) the generating function is 2*x*G/(x+1) + Int((x-1)*G/(x+1)^2, x) where G is the generating function of A005259. - Mark van Hoeij, May 07 2013
a(n) ~ -(-1)^n * 2^(3/4) * (1 + sqrt(2))^(4*n) / (24 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Jan 24 2019

A178808 a(n) = (1/n^2) * Sum_{k = 0..n-1} (2*k+1)*(D_k)^2, where D_0, D_1, ... are central Delannoy numbers given by A001850.

Original entry on oeis.org

1, 7, 97, 1791, 38241, 892039, 22092673, 571387903, 15271248769, 418796912007, 11725812711009, 333962374092543, 9648543623050593, 282164539499639559, 8338391167566634497, 248661515283002490879, 7474768663941435203073
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 16 2010

Keywords

Comments

On Jun 14 2010, Zhi-Wei Sun conjectured that a(n) = (1/n^2) * Sum_{k = 0..n-1} (2*k+1)*(D_k)^2 is always an integer and that p^2*a(p) = p^2 - 4*p^3*q_p(2) - 2*p^4*q_p(2)^2 (mod p^5) for any prime p > 3, where q_p(2) denotes the Fermat quotient (2^(p-1) - 1)/p (see Sun, Remark 4.3, p. 26, 2014). He also conjectured that Sum_{k = 0..n-1} (2*k+1)*(-1)^k*(D_k)^2 == 0 (mod n*D_n/(3,D_n)) for all n = 1,2,3,....
The fact that a(n) is an integer follows directly from the formulas for a(n) in the formula section below. - Mark van Hoeij, Nov 13 2022

Examples

			For n = 3 we have a(3) = (D_0^2 + 3*D_1^2 + 5*D_2^2)/3^2 = (1 + 3*3^2 + 5*13^2)/3^2 = 97.
		

Crossrefs

Programs

  • Maple
    A001850 := n -> LegendreP(n, 3); seq((6*A001850(n)*A001850(n-1)-A001850(n)^2-A001850(n-1)^2)/8, n=1..20); # Mark van Hoeij, Nov 12 2022
    # Alternative:
    g := n -> hypergeom([n, -n, 1/2], [1, 1], -8): # A358388
    f := n -> hypergeom([-n, -n], [1], 2):         # A001850
    a := n -> (3*f(n)*f(n-1) - g(n)) / 4:
    seq(simplify(a(n)), n = 1..17); # Peter Luschny, Nov 13 2022
  • Mathematica
    DD[n_]:=Sum[Binomial[n+k,2k]Binomial[2k,k],{k,0,n}]; SS[n_]:= Sum[(2k+1)*DD[k]^2,{k,0,n-1}]/n^2; Table[SS[n],{n,1,25}]
    Table[Sum[(2k+1)*JacobiP[k,0,0,3]^2, {k, 0, n-1}]/n^2, {n, 1, 30}] (* G. C. Greubel, Jan 23 2019 *)
  • Python
    # prepends a(0) = 0
    def A178808List(size: int) -> list[int]:
        A358387 = A358387gen()
        A358388 = A358388gen()
        return [(next(A358387) - next(A358388)) // 4 for n in range(size)]
    print(A178808List(18)) # Peter Luschny, Nov 15 2022

Formula

a(n) ~ (1 + sqrt(2))^(4*n) / (16*Pi*n^2). - Vaclav Kotesovec, Jan 24 2019
G.f.: Integral(hypergeom([1/2, 1/2], [2], -32*x/(1 - 34*x + x^2))/((1 - x)*(1 - 34*x + x^2)^(1/2))). - Mark van Hoeij, Nov 10 2022
a(n) = (6*A001850(n)*A001850(n-1) - A001850(n)^2 - A001850(n-1)^2)/8. - Mark van Hoeij, Nov 12 2022
a(n) = (3*f(n)*f(n-1) - g(n))/4, where g(n) = hypergeom([n, -n, 1/2], [1, 1], -8) and f(n) = hypergeom([-n, -n], [1], 2). This formula also gives an integer value for n = 0. - Peter Luschny, Nov 13 2022

A176285 a(1) = 1, and then 4*(2*n + 1)^2*a(n+1) + n^2*a(n) = (205*n^2 + 160*n + 32)*binomial(2*n-1, n)^3 (n = 1, 2, 3, ...).

Original entry on oeis.org

1, 11, 316, 12011, 522376, 24593348, 1219951188, 62798884331, 3323228619736, 179665076698136, 9880531254032176, 550994628527745476, 31084678988906064016, 1770908612898043660556, 101738260887234550287316
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 14 2010

Keywords

Comments

On Apr 04 2010, Zhi-Wei Sun introduced this sequence and conjectured that each term a(n) is a positive integer. He also guessed that a(n) is odd if and only if n is a power of two. It is easy to see that 8*n^2*binomial(2*n,n)^2*a(n) equals Sum_{k=0..n-1} (205*k^2 + 160*k + 32)*(-1)^(n-1-k)*binomial(2*k,k)^5. Sun also conjectured that for any prime p > 5 we have Sum_{k=0..p-1} (205*k^2 + 160*k + 32)(-1)^k*binomial(2*k,k)^5 == 32*p^2 + 64*p^3*Sum_{k=1..p-1} 1/k (mod p^7) and Sum_{k=0..(p-1)/2} (205*k^2 + 160*k + 32)(-1)^k*binomial(2*k,k)^5 == 32*p^2 + 896/3*p^5*B_{p-3} (mod p^6), where B_0, B_1, B_2, ... are Bernoulli numbers. It is also remarkable that Sum_{n>0} (-1)^n(205*n^2 - 160*n + 32)/(n^5*binomial(2*n,n)^5) = -2*zeta(3) as proved by T. Amdeberhan and D. Zeilberger via the WZ method.

Examples

			For n = 2 we have a(2) = 11 since 4*(2*1 + 1)^2*a(2) = -1^2*a(1) + (205*1^2 + 160*1 + 32)*binomial(2*1 - 1,1)^3 = 396.
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 1 elif n = 2 then 11 else
     ( (209715*n^7 - 1828715*n^6 + 6716166*n^5 - 13424850*n^4 + 15714735*n^3 - 10726375*n^2 + 3936520*n - 598220)*a(n-1) + 8*(n - 2)^2*(2*n - 3)^3*(205*n^2 - 250*n + 77)*a(n-2) )/( 4*(n - 1)^3*(2*n - 1)^2*(205*n^2 - 660*n + 532) ) end if; end:
    seq(a(n), n = 1..20); # Peter Bala, Jul 12 2024
  • Mathematica
    u[n_]:=u[n]=((205(n-1)^2+160(n-1)+32)Binomial[2n-3,n-1]^3-(n-1)^2*u[n-1])/(4(2n-1)^2); u[1]=1; Table[u[n],{n,1,50}]

Formula

a(n) = (Sum_{k=0..n-1} (205*k^2 + 160*k + 32)(-1)^(n-1-k)*binomial(2*k,k)^5)/(8*n^2*binomial(2*n,n)^2).
From Peter Bala, Jul 11 2024: (Start)
a(n+1) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(n+k, k) * binomial(2*n+k+1, n).
Compare with the identity Sum_{k = 0..n} binomial(n, k)^2 * binomial(n+k, k) * binomial(2*n+k, n) = binomial(2*n, n)^3 = A002897(n).
a(n) = binomial(2*n-1, n-1)*hypergeom([-n+1, -n+1, n, 2*n], [1, 1, n+1], 1).
P-recursive: 4*(205*n^2 - 250*n + 77)*(2*n + 1)^2*n^3*a(n+1) = (209715*n^7 - 360710*n^6 + 147891*n^5 + 65280*n^4 - 57280*n^3 + 3680*n^2 + 5120*n - 1024)*a(n) + 8*(205*n^2 + 160*n + 32)*(n - 1)^2*(2*n - 1)^3*a(n-1) with a(1) = 1 and a(2) = 11.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. (End)
a(n) ~ 2^(6*n-3) / (5*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Jul 17 2024
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1) * binomial(n-1, k) * binomial(2*n+k-1, k) * A108625(n-1, k). Cf. A002897. - Peter Bala, Oct 16 2024

A176898 a(n) = binomial(6*n, 3*n)*binomial(3*n, n)/(2*(2*n+1)*binomial(2*n, n)).

Original entry on oeis.org

5, 231, 14586, 1062347, 84021990, 7012604550, 607892634420, 54200780036595, 4938927219474990, 457909109348466930, 43057935618181929900, 4096531994713828810686, 393617202432246696493436, 38142088615983865845923052, 3723160004902167033863327592
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 28 2010

Keywords

Comments

During April 26-28, 2010, Zhi-Wei Sun introduced this new sequence and proved that a(n) = binomial(6n,3n)*binomial(3n,n)/(2*(2n+1)*binomial(2n,n)) is a positive integer for every n=1,2,3,... He also observed that a(n) is odd if and only if n is a power of two, and that 3a(n)=0 (mod 2n+3). By Stirling's formula, we have lim_n (8n*sqrt(n*Pi)a(n)/108^n) = 1. It is interesting to find a combinatorial interpretation or recursion for the sequence.
From Tatiana Hessami Pilehrood, Dec 01 2015: (Start)
Zhi-Wei Sun formulated two conjectures concerning a(n) (see Conjectures 1.1 and 1.2 in Z.-W. Sun, "Products and sums divisible by central binomial coefficients" and Conjecture A89 in "Open conjectures on congruences"). The first conjecture states that Sum_{n=1..p-1} a(n)/(108^n) is congruent to 0 or -1 modulo a prime p > 3 depending on whether p is congruent to +-1 or +-5 modulo 12, respectively.
The second conjecture asks about an exact formula for a companion sequence of a(n). Both conjectures as well as many numerical congruences involving a(n) and (2n+1)a(n) were solved by Kh. Hessami Pilehrood and T. Hessami Pilehrood, see the link below. (End)
This is the even bisection of A078531 divided by 2. The odd bisection divided by 2 is A281733. - Akiva Weinberger, Dec 09 2024

Examples

			For n=2 we have a(2) = binomial(12,6)*binomial(6,2)/(2*(2*2+1)*binomial(4,2)) = 231.
		

Crossrefs

Programs

  • Magma
    [Binomial(6*n, 3*n)*Binomial(3*n, n)/(2*(2*n+1)*Binomial(2*n, n)): n in [1..15]]; // Vincenzo Librandi, Dec 02 2015
    
  • Maple
    ogf := eval((1-6*s)/((12*s-1)*(8*s-2)) - 1/2, s=RootOf(x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2,s));
    series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
  • Mathematica
    S[n_]:=Binomial[6n,3n]Binomial[3n,n]/(2(2n+1)Binomial[2n,n]) Table[S[n],{n,1,50}]
  • PARI
    a(n) = binomial(6*n, 3*n) * binomial(3*n, n) / (2*(2*n+1) * binomial(2*n, n)); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n)/f(r)/f(n-r)
    def A176898(n): return C(6*n, 3*n) * C(3*n, n) / (2*(2*n+1) * C(2*n, n)) # Indranil Ghosh, Mar 05 2017

Formula

G.f.: (1-6*s)/((12*s-1)*(8*s-2)) - 1/2, where x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2 = 0. - Mark van Hoeij, May 06 2013
a(n) ~ 2^(2*n-3) * 3^(3*n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 09 2023
From Peter Bala, Feb 21 2023: (Start)
a(n+1) = 6*(6*n + 1)*(6*n + 5)/((n + 1)*(2*n + 3))*a(n).
a(n) = (2^(2*n-1)) * Product_{1 <= i <= j <= 2*n-1} (2*i + j + 2)/(2*i + j - 1). Cf. A006013. (End)
D-finite with recurrence n*(2*n+1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
a(n) = 2^(4n-1) * binomial(3n-1/2, 2n)/(2n+1). - Akiva Weinberger, Dec 09 2024
a(n) = A078531(2*n)/2. - Akiva Weinberger, Dec 09 2024

A179089 a(n) = (1/n^2) * Sum_{k=0..n-1} (2k+1)*T_k^2(-3)^(n-1-k), where T_0, T_1, ... are central trinomial coefficients given by A002426.

Original entry on oeis.org

1, 0, 5, 13, 105, 576, 4005, 27000, 193193, 1402672, 10433709, 78807785, 603996745, 4683970032, 36702939429, 290184446349, 2312460578025, 18556825469040, 149842592021997, 1216719520281045, 9929612901775761, 81406058258856240
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 29 2010

Keywords

Comments

On Jun 28 2010, Zhi-Wei Sun conjectured that a(n) is an integer for every n=1,2,3,... and that a(p) = (1+p/3)/2 (mod p) for any prime p, where (p/3) is the Legendre symbol. In contrast, he showed that Sum_{k=0..n-1} (2k+1)*T_k^2*3^(n-1-k) = n*T_n*T_{n-1} for all n=1,2,3,...
The formula for a(n) in the formula section implies that a(n) is an integer. - Mark van Hoeij, Nov 13 2022

Examples

			For n = 4 we have a(4) = (T_0^2(-3)^3 + 3*T_1^2(-3)^2 + 5*T_2^2(-3) + 7*T_3^2)/4^2 = (-27 + 27 - 5*27 + 7^3)/16 = 13.
		

Crossrefs

Programs

  • Maple
    A002426 := n -> simplify(GegenbauerC(n, -n, -1/2)); seq( (A002426(n)+A002426(n-1))*(3*A002426(n-1)-A002426(n))/4, n=1..20); # Mark van Hoeij, Nov 13 2022
  • Mathematica
    TT[n_]:=Sum[Binomial[n,2k]Binomial[2k,k],{k,0,Floor[n/2]}] SS[n_]:=Sum[(2k+1)*TT[k]^2*(-3)^(n-1-k),{k,0,n-1}]/n^2 Table[SS[n],{n,1,50}]

Formula

G.f.: Integral(hypergeom([1/2, 3/2], [2], 16*x/(1 + 3*x)^2)/(1 + 3*x)^2). - Mark van Hoeij, Nov 10 2022
a(n) = (A002426(n)+A002426(n-1))*(3*A002426(n-1)-A002426(n))/4. - Mark van Hoeij, Nov 13 2022

A179524 a(n) = Sum_{k=0..n} (-4)^k*binomial(n,k)^2*binomial(n-k,k)^2.

Original entry on oeis.org

1, 1, -15, -143, 1, 12801, 100401, -555855, -16006143, -69903359, 1371541105, 20881151985, 5878439425, -2725373454335, -25310084063055, 145439041081137, 4851621446905857, 23952290336559105, -470461357757965071, -7793050905481342863, -4149447893184517119
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 17 2010

Keywords

Comments

On July 1, 2010 Zhi-Wei Sun introduced this sequence and made the following conjecture: If p is a prime with p=1,9 (mod 20) and p=x^2+5y^2 with x,y integers, then sum_{k=0}^{p-1}a(k)=4x^2-2p (mod p^2); if p is a prime with p=3,7 (mod 20) and 2p=x^2+5y^2 with x,y integers, then sum_{k=0}^{p-1}a(k)=2x^2-2p (mod p^2); if p is a prime with p=11,13,17,19 (mod 20), then sum_{k=0}^{p-1}w_k=0 (mod p^2). He also conjectured that sum_{k=0}^{n-1}(20k+17)w_k=0 (mod n) for all n=1,2,3,... and that sum_{k=0}^{p-1}(20k+17)w_k=p(10(-1/p)+7) (mod p^2) for any odd prime p. Sun also formulated similar conjectures for some sequences similar to a(n).

Examples

			For n=3 we have a(3)=1-4*3^2*2^2=-143.
		

Crossrefs

Programs

  • Mathematica
    W[n_]:=Sum[(-4)^k*Binomial[n,k]^2*Binomial[n-k,k]^2,{k,0,n}] Table[W[n],{n,0,50}]

Formula

a(n) = Sum_{k=0..[n/2]} (-4)^k*binomial(n,2k)^2*binomial(2k,k)^2.

A176477 a(1)=2; for n >= 2, (2n+1)^3*a(n) = 32n^3*a(n-1) + (21n^3 + 22n^2 + 8n + 1)*binomial(2n-1,n)^4.

Original entry on oeis.org

2, 181, 23488, 3625081, 619898336, 113451041232, 21790823094272, 4339409873332321, 888730714063587232, 186141207745025911376, 39707252850926474171392, 8600444322930062324576656
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 18 2010

Keywords

Comments

On Apr 06 2010, Zhi-Wei Sun introduced this sequence and conjectured that each term a(n) is a positive integer. He also guessed that a(n) is odd if and only if n = 2, 2^2, 2^3, .... It is easy to see that 16*(2n+1)^3*binomial(2n,n)^3*a(n) equals Sum_{k=0..n} (21k^3 + 22k^2 + 8k + 1)*256^(n-k)*binomial(2k,k)^7. Sun also conjectured that for any prime p > 5 we have Sum_{k=0..p-1} (21k^3 + 22k^2 + 8k + 1)*binomial(2k,k)^7/256^k == p^3 (mod p^8). It is also remarkable that Sum_{n>=1} 256^n*(21n^3 - 22n^2 + 8n - 1)/(n^7*binomial(2n,n)^7) = Pi^4/8 as conjectured by J. Guillera.

Examples

			For n=2 we have a(2) = (32*2^3*a(1) + (21*2^3 + 22*2^2 + 8*2 + 1)*binomial(2*2-1,2)^4)/(2*2 + 1)^3 = 181.
		

Crossrefs

Programs

  • Mathematica
    u[n_]:=u[n]=((21n^3+22n^2+8n+1)Binomial[2n-1,n]^4+32*n^3*u[n-1])/((2n+1)^3) u[1]=2 Table[u[n],{n,1,50}]

Formula

a(n) = (Sum_{k=0..n} (21k^3 + 22k^2 + 8k + 1)*256^(n-k)*binomial(2k,k)^7) / (16(2n+1)^3*binomial(2n,n)^3).

A179535 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n-k,k)^2 * 81^k.

Original entry on oeis.org

1, 1, 325, 2917, 247861, 5937301, 265793401, 10705726585, 378746444917, 18588932910901, 657940881863305, 32580334626782185, 1257522211980656425, 59212895251349313865, 2490039488311462939645, 112553667120196462181437
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 18 2010

Keywords

Comments

On Jul 17 2010, Zhi-Wei Sun introduced this sequence and made the following conjecture: If p is a prime with p=1,9,11,19 (mod 40) and p = x^2+10y^2 with x,y integers, then Sum_{k=0..p-1} a(k) == 4x^2-2p (mod p^2); if p is a prime with p == 7,13,23,37 (mod 40) and 2p = x^2 + 10y^2 with x,y integers, then Sum_{k=0..p-1} a(k) == 2p - 2x^2 (mod p^2); if p is an odd prime with (-10/p)=-1, then Sum_{k=0..p-1} a(k) == 0 (mod p^2). He also conjectured that Sum_{k=0..n-1} (10k+9)*a(k) == 0 (mod n) for all n=1,2,3,... and that Sum_{k=0..p-1} (10k+9)*a(k) == p(4(-2/p)+5) (mod p^2) for any prime p > 3.

Examples

			For n=2 we have a(2) = 1 + 2^2*81 = 325.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n,k]^2Binomial[n-k,k]^2*81^k,{k,0,n}] Table[a[n],{n,0,25}]
Showing 1-10 of 13 results. Next