A178791
The arithmetic mean of (2k+1)(-1)^k*A_k (k=0,...,n-1), where A_0, A_1,... are Apéry numbers given by A005259.
Original entry on oeis.org
1, -7, 117, -2441, 57449, -1453635, 38609845, -1061792695, 29973352185, -863536596143, 25288254409373, -750531594051981, 22525211241191881, -682459907754004723, 20845409947239778533, -641211780685502724425
Offset: 1
For n=3 we have a(3) = (A_0 - 3A_1 + 5A_2)/3 = (1 - 3*5 + 5*73)/3 = 117.
-
G := (-1/2)*(3*x-3+(x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3, 2/3], [1], (-1/2)*(x^2-7*x+1)*(x+1)^(-3)*(x^2-34*x+1)^(1/2)+(1/2)*(x^3+30*x^2 -24*x+1)*(x+1)^(-3))^2;
ogf := 2*x*G/(x+1)+Int((x-1)*G/(x+1)^2,x);
series(ogf, x=0, 25);
series(-subs(x=-x,%), x=0, 25); # Mark van Hoeij, May 07 2013
-
Apery[n_]:= Sum[Binomial[n+k,k]^2Binomial[n,k]^2,{k,0,n}]; AA[n_]:= Sum[(2k+1)(-1)^k*Apery[k],{k,0,n-1}]/n; Table[AA[n],{n,25}]
-
A(n) = sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2); \\ A005259
a(n) = sum(k=0, n-1, (2*k+1)*(-1)^k*A(k))/n; \\ Michel Marcus, Jan 24 2019
A178808
a(n) = (1/n^2) * Sum_{k = 0..n-1} (2*k+1)*(D_k)^2, where D_0, D_1, ... are central Delannoy numbers given by A001850.
Original entry on oeis.org
1, 7, 97, 1791, 38241, 892039, 22092673, 571387903, 15271248769, 418796912007, 11725812711009, 333962374092543, 9648543623050593, 282164539499639559, 8338391167566634497, 248661515283002490879, 7474768663941435203073
Offset: 1
For n = 3 we have a(3) = (D_0^2 + 3*D_1^2 + 5*D_2^2)/3^2 = (1 + 3*3^2 + 5*13^2)/3^2 = 97.
- G. C. Greubel, Table of n, a(n) for n = 1..500
- Zhi-Wei Sun, Arithmetic properties of Apery numbers and central Delannoy numbers, arXiv:1006.2776 [math.NT], 2011.
- Zhi-Wei Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57 (2014), no. 7, 1375-1400; arXiv:1008.3887 [math.NT], 2010-2014.
-
A001850 := n -> LegendreP(n, 3); seq((6*A001850(n)*A001850(n-1)-A001850(n)^2-A001850(n-1)^2)/8, n=1..20); # Mark van Hoeij, Nov 12 2022
# Alternative:
g := n -> hypergeom([n, -n, 1/2], [1, 1], -8): # A358388
f := n -> hypergeom([-n, -n], [1], 2): # A001850
a := n -> (3*f(n)*f(n-1) - g(n)) / 4:
seq(simplify(a(n)), n = 1..17); # Peter Luschny, Nov 13 2022
-
DD[n_]:=Sum[Binomial[n+k,2k]Binomial[2k,k],{k,0,n}]; SS[n_]:= Sum[(2k+1)*DD[k]^2,{k,0,n-1}]/n^2; Table[SS[n],{n,1,25}]
Table[Sum[(2k+1)*JacobiP[k,0,0,3]^2, {k, 0, n-1}]/n^2, {n, 1, 30}] (* G. C. Greubel, Jan 23 2019 *)
-
# prepends a(0) = 0
def A178808List(size: int) -> list[int]:
A358387 = A358387gen()
A358388 = A358388gen()
return [(next(A358387) - next(A358388)) // 4 for n in range(size)]
print(A178808List(18)) # Peter Luschny, Nov 15 2022
A189766
Trace of the inverse of the n-th order Hilbert matrix.
Original entry on oeis.org
1, 16, 381, 10496, 307505, 9316560, 288307285, 9052917760, 287307428985, 9192433560080, 295998598024613, 9580548525151488, 311414673789269713, 10158681128480830288, 332394269045633574405, 10904463909222273843200, 358543696456299951516425
Offset: 1
-
Table[Trace[Inverse[HilbertMatrix[n]]], {n, 20}] (* or *)
Table[n^2 HypergeometricPFQ[{1/2, 1-n, 1-n, 1+n, 1+n}, {1, 1, 1, 3/2}, 1], {n, 20}]
-
a(n) = trace(1/mathilbert(n)) \\ Jianing Song, Oct 18 2021
A179089
a(n) = (1/n^2) * Sum_{k=0..n-1} (2k+1)*T_k^2(-3)^(n-1-k), where T_0, T_1, ... are central trinomial coefficients given by A002426.
Original entry on oeis.org
1, 0, 5, 13, 105, 576, 4005, 27000, 193193, 1402672, 10433709, 78807785, 603996745, 4683970032, 36702939429, 290184446349, 2312460578025, 18556825469040, 149842592021997, 1216719520281045, 9929612901775761, 81406058258856240
Offset: 1
For n = 4 we have a(4) = (T_0^2(-3)^3 + 3*T_1^2(-3)^2 + 5*T_2^2(-3) + 7*T_3^2)/4^2 = (-27 + 27 - 5*27 + 7^3)/16 = 13.
-
A002426 := n -> simplify(GegenbauerC(n, -n, -1/2)); seq( (A002426(n)+A002426(n-1))*(3*A002426(n-1)-A002426(n))/4, n=1..20); # Mark van Hoeij, Nov 13 2022
-
TT[n_]:=Sum[Binomial[n,2k]Binomial[2k,k],{k,0,Floor[n/2]}] SS[n_]:=Sum[(2k+1)*TT[k]^2*(-3)^(n-1-k),{k,0,n-1}]/n^2 Table[SS[n],{n,1,50}]
A179524
a(n) = Sum_{k=0..n} (-4)^k*binomial(n,k)^2*binomial(n-k,k)^2.
Original entry on oeis.org
1, 1, -15, -143, 1, 12801, 100401, -555855, -16006143, -69903359, 1371541105, 20881151985, 5878439425, -2725373454335, -25310084063055, 145439041081137, 4851621446905857, 23952290336559105, -470461357757965071, -7793050905481342863, -4149447893184517119
Offset: 0
For n=3 we have a(3)=1-4*3^2*2^2=-143.
-
W[n_]:=Sum[(-4)^k*Binomial[n,k]^2*Binomial[n-k,k]^2,{k,0,n}] Table[W[n],{n,0,50}]
A179535
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n-k,k)^2 * 81^k.
Original entry on oeis.org
1, 1, 325, 2917, 247861, 5937301, 265793401, 10705726585, 378746444917, 18588932910901, 657940881863305, 32580334626782185, 1257522211980656425, 59212895251349313865, 2490039488311462939645, 112553667120196462181437
Offset: 0
For n=2 we have a(2) = 1 + 2^2*81 = 325.
-
a[n_]:=Sum[Binomial[n,k]^2Binomial[n-k,k]^2*81^k,{k,0,n}] Table[a[n],{n,0,25}]
A179100
a(n) = (1/n) * Sum_{k=0..n-1} (8k+5) T_k^2, where T_0, T_1, ... are central trinomial coefficients given by A002426.
Original entry on oeis.org
5, 9, 69, 407, 2997, 22005, 169389, 1325889, 10573677, 85386881, 697013325, 5739021051, 47599593941, 397234035333, 3332690347437, 28089543969855, 237711099004461, 2018856328439841, 17200553934626253, 146966002696538271
Offset: 1
For n=3 we have a(3) = (5*T_0^2 + 13*T_1^2 + 21*T_2^2)/3 = (5 + 13 + 21*9)/3 = 69.
-
TT[n_]:=Sum[Binomial[n,2k]Binomial[2k,k],{k,0,Floor[n/2]}] SS[n_]:=Sum[(8k+5)*TT[k]^2,{k,0,n-1}]/n Table[SS[n],{n,1,50}]
A179537
a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(n-k,k)^2*(-16)^k.
Original entry on oeis.org
1, 1, -63, -575, 6913, 224001, 420801, -69020223, -918270975, 14596918273, 511845045697, 336721812417, -198449271643391, -2498857696947455, 51614254703660481, 1666776235855331265, -1588877076116525055
Offset: 0
For n=2 we have a(2)=1+2^2*(-16)=-63.
-
a[n_]:=Sum[Binomial[n,k]^2Binomial[n-k,k]^2*(-16)^k,{k,0,n}] Table[a[n],{n,0,25}]
Showing 1-8 of 8 results.
Comments