cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002897 a(n) = binomial(2n,n)^3.

Original entry on oeis.org

1, 8, 216, 8000, 343000, 16003008, 788889024, 40424237568, 2131746903000, 114933031928000, 6306605327953216, 351047164190381568, 19774031697705428416, 1125058699232216000000, 64561313052442296000000
Offset: 0

Views

Author

Keywords

Comments

Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*z + x + y + z)). - Gheorghe Coserea, Jul 14 2016
Conjecture: The g.f. is also the diagonal of the rational function 1/(1 - (x + y)*(1 - 4*z*t) - z - t) = 1/det(I - M*diag(x, y, z, t)), I the 4 x 4 unit matrix and M the 4 x 4 matrix [1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, -1; 1 , 1, -1, 1]. If true, then a(n) = [(x*y*z)^n] (1 + x + y + z)^(2*n)*(1 + x + y - z)^n*(1 + x - y + z)^n. - Peter Bala, Apr 10 2022

References

  • S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 36, equation (25).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • Magma
    [Binomial(2*n, n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64x], {x, 0, n}];
    Table[Binomial[2n,n]^3,{n,0,20}] (* Harvey P. Dale, Dec 06 2017 *)
  • PARI
    {a(n) = binomial(2*n, n)^3}; /* Michael Somos, Jan 31 2007 */
    
  • Sage
    [binomial(2*n, n)**3 for n in range(21)] # Zerinvary Lajos, Apr 21 2009
    

Formula

Expansion of (K(k)/(Pi/2))^2 in powers of (kk'/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at modulus k. - Michael Somos, Jan 31 2007
G.f.: F(1/2, 1/2, 1/2; 1, 1; 64x) where F() is a hypergeometric function. - Michael Somos, Jan 31 2007
G.f.: hypergeom([1/4,1/4],[1],64*x)^2. - Mark van Hoeij, Nov 17 2011
D-finite with recurrence n^3*a(n) - 8*(2*n - 1)^3*a(n-1) = 0. - R. J. Mathar, Mar 08 2013
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)^3 = ( [x^n](1 + x)^(2*n) )^3 = [x^n](F(x)^(8*n)), where F(x) = 1 + x + 6*x^2 + 111*x^3 + 2806*x^4 + 84456*x^5 + 2832589*x^6 + 102290342*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002894, A006480, A008977, A186420 and A188662. (End)
a(n) ~ 64^n/(Pi*n)^(3/2). - Ilya Gutkovskiy, Jul 13 2016
0 = (-x^2 + 64*x^3)*y''' + (-3*x + 288*x^2)*y'' + (-1 + 208*x)*y' + 8*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = Sum_{k = 0..n} (2*n + k)!/(k!^3*(n - k)!^2). Cf. A001850(n) = Sum_{k = 0..n} (n + k)!/(k!^2*(n - k)!). - Peter Bala, Jul 27 2016
It appears that a(n) is the coefficient of (x*y*z)^(2*n) in the expansion of (1 + x*y + x*z - y*z)^(2*n) * (1 + x*y - x*z + y*z)^(2*n) * (1 - x*y + x*z + y*z)^(2*n). Cf. A000172. - Peter Bala, Sep 21 2021
From Peter Bala, Sep 24 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k,n).
a(n) = the coefficient of (x*y*z*t^2)^n in the expansion of 1/(1 - x - y)*(1 - z - t) - x*y*z*t) (a(n) = A(n,n,n,2*n) in the notation of Straub, Theorem 1.2). (End)
a(n) = (8/5) * Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k-1,n) for n >= 1. - Peter Bala, Jul 09 2024
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(2*n, k). Cf. A183204. - Peter Bala, Oct 12 2024
From Peter Bala, Oct 16 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k, k)*A108625(n, k) = 8 * Sum_{k = 0..n} (-1)^(n+k+1) * binomial(n-1, k)*binomial(2*n+k-1, k)*A108625(n, k) = (8/5) * Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k-1, k)*A108625(n, k) for n >= 1. Cf. A176285. (End)

A176898 a(n) = binomial(6*n, 3*n)*binomial(3*n, n)/(2*(2*n+1)*binomial(2*n, n)).

Original entry on oeis.org

5, 231, 14586, 1062347, 84021990, 7012604550, 607892634420, 54200780036595, 4938927219474990, 457909109348466930, 43057935618181929900, 4096531994713828810686, 393617202432246696493436, 38142088615983865845923052, 3723160004902167033863327592
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 28 2010

Keywords

Comments

During April 26-28, 2010, Zhi-Wei Sun introduced this new sequence and proved that a(n) = binomial(6n,3n)*binomial(3n,n)/(2*(2n+1)*binomial(2n,n)) is a positive integer for every n=1,2,3,... He also observed that a(n) is odd if and only if n is a power of two, and that 3a(n)=0 (mod 2n+3). By Stirling's formula, we have lim_n (8n*sqrt(n*Pi)a(n)/108^n) = 1. It is interesting to find a combinatorial interpretation or recursion for the sequence.
From Tatiana Hessami Pilehrood, Dec 01 2015: (Start)
Zhi-Wei Sun formulated two conjectures concerning a(n) (see Conjectures 1.1 and 1.2 in Z.-W. Sun, "Products and sums divisible by central binomial coefficients" and Conjecture A89 in "Open conjectures on congruences"). The first conjecture states that Sum_{n=1..p-1} a(n)/(108^n) is congruent to 0 or -1 modulo a prime p > 3 depending on whether p is congruent to +-1 or +-5 modulo 12, respectively.
The second conjecture asks about an exact formula for a companion sequence of a(n). Both conjectures as well as many numerical congruences involving a(n) and (2n+1)a(n) were solved by Kh. Hessami Pilehrood and T. Hessami Pilehrood, see the link below. (End)
This is the even bisection of A078531 divided by 2. The odd bisection divided by 2 is A281733. - Akiva Weinberger, Dec 09 2024

Examples

			For n=2 we have a(2) = binomial(12,6)*binomial(6,2)/(2*(2*2+1)*binomial(4,2)) = 231.
		

Crossrefs

Programs

  • Magma
    [Binomial(6*n, 3*n)*Binomial(3*n, n)/(2*(2*n+1)*Binomial(2*n, n)): n in [1..15]]; // Vincenzo Librandi, Dec 02 2015
    
  • Maple
    ogf := eval((1-6*s)/((12*s-1)*(8*s-2)) - 1/2, s=RootOf(x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2,s));
    series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
  • Mathematica
    S[n_]:=Binomial[6n,3n]Binomial[3n,n]/(2(2n+1)Binomial[2n,n]) Table[S[n],{n,1,50}]
  • PARI
    a(n) = binomial(6*n, 3*n) * binomial(3*n, n) / (2*(2*n+1) * binomial(2*n, n)); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n)/f(r)/f(n-r)
    def A176898(n): return C(6*n, 3*n) * C(3*n, n) / (2*(2*n+1) * C(2*n, n)) # Indranil Ghosh, Mar 05 2017

Formula

G.f.: (1-6*s)/((12*s-1)*(8*s-2)) - 1/2, where x+(3*s-1)*(12*s-1)^2*s*(4*s-1)^2 = 0. - Mark van Hoeij, May 06 2013
a(n) ~ 2^(2*n-3) * 3^(3*n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 09 2023
From Peter Bala, Feb 21 2023: (Start)
a(n+1) = 6*(6*n + 1)*(6*n + 5)/((n + 1)*(2*n + 3))*a(n).
a(n) = (2^(2*n-1)) * Product_{1 <= i <= j <= 2*n-1} (2*i + j + 2)/(2*i + j - 1). Cf. A006013. (End)
D-finite with recurrence n*(2*n+1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
a(n) = 2^(4n-1) * binomial(3n-1/2, 2n)/(2n+1). - Akiva Weinberger, Dec 09 2024
a(n) = A078531(2*n)/2. - Akiva Weinberger, Dec 09 2024

A176477 a(1)=2; for n >= 2, (2n+1)^3*a(n) = 32n^3*a(n-1) + (21n^3 + 22n^2 + 8n + 1)*binomial(2n-1,n)^4.

Original entry on oeis.org

2, 181, 23488, 3625081, 619898336, 113451041232, 21790823094272, 4339409873332321, 888730714063587232, 186141207745025911376, 39707252850926474171392, 8600444322930062324576656
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 18 2010

Keywords

Comments

On Apr 06 2010, Zhi-Wei Sun introduced this sequence and conjectured that each term a(n) is a positive integer. He also guessed that a(n) is odd if and only if n = 2, 2^2, 2^3, .... It is easy to see that 16*(2n+1)^3*binomial(2n,n)^3*a(n) equals Sum_{k=0..n} (21k^3 + 22k^2 + 8k + 1)*256^(n-k)*binomial(2k,k)^7. Sun also conjectured that for any prime p > 5 we have Sum_{k=0..p-1} (21k^3 + 22k^2 + 8k + 1)*binomial(2k,k)^7/256^k == p^3 (mod p^8). It is also remarkable that Sum_{n>=1} 256^n*(21n^3 - 22n^2 + 8n - 1)/(n^7*binomial(2n,n)^7) = Pi^4/8 as conjectured by J. Guillera.

Examples

			For n=2 we have a(2) = (32*2^3*a(1) + (21*2^3 + 22*2^2 + 8*2 + 1)*binomial(2*2-1,2)^4)/(2*2 + 1)^3 = 181.
		

Crossrefs

Programs

  • Mathematica
    u[n_]:=u[n]=((21n^3+22n^2+8n+1)Binomial[2n-1,n]^4+32*n^3*u[n-1])/((2n+1)^3) u[1]=2 Table[u[n],{n,1,50}]

Formula

a(n) = (Sum_{k=0..n} (21k^3 + 22k^2 + 8k + 1)*256^(n-k)*binomial(2k,k)^7) / (16(2n+1)^3*binomial(2n,n)^3).

A374605 a(n) = Sum_{k = 0..n} binomial(n, k)^2*binomial(n+k, k)*binomial(3*n+2*k, n).

Original entry on oeis.org

1, 13, 621, 40864, 3116125, 258687513, 22695228864, 2069939892096, 194303918495709, 18648446389798225, 1821631879087498621, 180513102382789033728, 18101940249015916366528, 1833572727177462316881472, 187323995560940882748187200, 19279943156312884441303524864, 1997221716775275248175573251037
Offset: 0

Views

Author

Peter Bala, Jul 20 2024

Keywords

Comments

Compare with the identity Sum_{k = 0..n} binomial(n, k)^2 * binomial(n+k, k) * binomial(2*n+k, n) = binomial(2*n, n)^3 = A002897(n).
It is easy to see that for odd prime p, binomial(2*n, n)^3 is divisible by p^3 for integer n in the interval [(p + 1)/2, p - 1]. A similar property appears to hold for the present sequence. We conjecture that for prime p >= 5, a(n) is divisible by p^3 for integer n in the interval [ceiling((2*p + 1)/3), p - 1] (checked up to p = 101).
More generally, for m >= 2, a similar divisibility property appears to hold for the sequence whose n-th term is equal to Sum_{k = 0..n} binomial(n, k)^2* binomial(n+k, k)*binomial((m + 1)*n + m*k, n).

Examples

			Factorization of a(8) thru a(10) showing divisibility by 11^3:
a(8) = (3^6)*11^3*10667*18773
a(9) = (5^2)*7*(11^3)*(13^3)*3607*10103
a(10) = (11^3)*(13^4)*31*22699*68099.
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n, k)^2*binomial(n+k, k)*binomial(3*n+2*k, n), k = 0..n), n = 0..20);
    # faster program for large n
    seq(simplify(binomial(3*n, n)*hypergeom([-n, -n, (3*n+1)/2, (3*n+2)/2], [1, 1, n+1/2], 1)), n = 0..20);

Formula

a(n) = binomial(3*n, n)*hypergeom([-n, -n, (3*n+1)/2, (3*n+2)/2], [1, 1, n+1/2], 1).
P-recursive: 16*n^3*(5616*n^4 - 30888*n^3 + 63459*n^2 - 57709*n + 19600)*(4*n - 1)^2*(4*n - 3)^2*a(n) = 36*(72783360*n^11 - 655050240*n^10 + 2595613248*n^9 - 5966404272*n^8 + 8824615470*n^7 - 8803399545*n^6 + 6034085115*n^5 - 2836309905*n^4 + 893904075*n^3 - 179376410*n^2 + 20562360*n - 1019200)*a(n-1) + 27*n*(5616*n^4 - 8424*n^3 + 4491*n^2 - 991*n + 78)*(3*n - 4)^3*(3*n - 5)^3*a(n-2) with a(0) = 1, a(1) = 13.
a(n) ~ 3^(9*n/2) * (1 + sqrt(3))^(6*n + 3) / (Pi^(3/2) * n^(3/2) * 2^(9*n + 9/2)). - Vaclav Kotesovec, Jul 22 2024

A374606 a(n) = Sum_{k = 0..n} binomial(n, k)^2*binomial(n+k, k)*binomial(3*n+2*k+1, n).

Original entry on oeis.org

1, 16, 783, 52000, 3984625, 331782528, 29167556544, 2664193232448, 250366507021125, 24050203166498080, 2350951602405723031, 233101029618601148160, 23386851829632443099584, 2369867535548685346720000, 242199626637223381868264640, 24935593829720710016846519424, 2583792728153680286245574534061
Offset: 0

Views

Author

Peter Bala, Jul 13 2024

Keywords

Comments

A companion sequence to A374605.
Conjecture: for prime p, a(n) is divisible by p^3 for integer n in the interval [(1/3)*(2*p + (p/3)), p - 1], where (p/3) denotes the Legendre symbol.
More generally, for m >= 2, a similar divisibility property appears to hold for the sequence whose n-th term is equal to Sum_{k = 0..n} binomial(n, k)^2* binomial(n+k, k)*binomial((m + 1)*n + m*k + 1, n).

Examples

			Factorization of a(9) thru a(12) showing divisibility by 13^3:
a(9) = (2^5)*5*(11^3)*(13^3)*1109*46351
a(10) = (11^3)*(13^3)*803962100633
a(11) = (2^8)*(3^3)*5*(13^3)*(17^3)*67*79*118057
a(12) = (2^6)*7*(13^3)*(17^3)*4836341163053.
		

Crossrefs

Programs

  • Maple
    seq( add(binomial(n, k)^2*binomial(n+k, k)*binomial(3*n+2*k+1, n), k = 0..n), n = 0..20);
    # faster program for large n
    seq(simplify( binomial(3*n+1,n) * hypergeom([-n, -n, (3*n+2)/2, (3*n+3)/2], [1, 1, n+3/2], 1)), n = 0..20);

Formula

a(n) = binomial(3*n+1,n) * hypergeom([-n, -n, (3*n+2)/2, (3*n+3)/2], [1, 1, n+3/2], 1).
P-recursive: 16*(5616*n^4 - 22464*n^3 + 33183*n^2 - 21438*n + 5116)*(4*n - 1)^2*(4*n + 1)^2*n^3*a(n) = 36*(36391680*n^10 - 181958400*n^9 + 367112736*n^8 - 376700544*n^7 + 196483887*n^6 - 35225037*n^5 - 11205753*n^4 + 5552733*n^3 - 287502*n^2 - 163800*n + 20800)*(2*n - 1)*a(n-1) + 27*(n - 1)*(5616*n^4 - 513*n^2 + 13)*(3*n - 2)^3*(3*n - 4)^3*a(n-2) with a(0) = 1 and a(1) = 16.
a(n) ~ 3^((9*n + 3)/2) * (1 + sqrt(3))^(6*n+3) / (Pi^(3/2) * n^(3/2) * 2^(9*n + 13/2)). - Vaclav Kotesovec, Jul 16 2024
Showing 1-5 of 5 results.