cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A045721 a(n) = binomial(3*n+1,n).

Original entry on oeis.org

1, 4, 21, 120, 715, 4368, 27132, 170544, 1081575, 6906900, 44352165, 286097760, 1852482996, 12033222880, 78378960360, 511738760544, 3348108992991, 21945588357420, 144079707346575, 947309492837400, 6236646703759395, 41107996877935680, 271250494550621040, 1791608261879217600
Offset: 0

Views

Author

Keywords

Comments

Number of leaves in all noncrossing rooted trees on n nodes on a circle.
Number of standard tableaux of shape (n-1,1^(2n-3)). - Emeric Deutsch, May 25 2004
a(n) = number of Dyck (2n-3)-paths with exactly one descent of odd length. For example, a(3) counts all 5 Dyck 3-paths except UDUDUD. - David Callan, Jul 25 2005
a(n+2) gives row sums of A119301. - Paul Barry, May 13 2006
a(n) is the number of paths avoiding UU from (0,0) to (3n,n) and taking steps from {U,H}. - Shanzhen Gao, Apr 15 2010
Central coefficients of triangle A078812. - Vladimir Kruchinin, May 10 2012
Row sums of A252501. - L. Edson Jeffery, Dec 18 2014

Crossrefs

Programs

Formula

a(n) is asymptotic to c/sqrt(n)*(27/4)^n with c=0.73... - Benoit Cloitre, Jan 27 2003
G.f.: gz^2/(1-3zg^2), where g=g(z) is given by g=1+zg^3, g(0)=1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
a(n+2) = C(3n+1,n) = Sum_{k=0..n} C(3n-k,n-k). - Paul Barry, May 13 2006
a(n+2) = C(3n+1,2n+1) = A078812(2n,n). - Paul Barry, Nov 09 2006
G.f.: A(x)=(2*cos(asin((3^(3/2)*sqrt(x))/2)/3)* sin(asin((3^(3/2)* sqrt(x))/2)/3))/(sqrt(3)*sqrt(1-(27*x)/4)*sqrt(x)). - Vladimir Kruchinin, Jun 10 2012
From Peter Luschny, Sep 04 2012: (Start)
O.g.f.: hypergeometric2F1([2/3, 4/3], [3/2], x*27/4).
a(n) = (n+1)*hypergeometric2F1([-2*n, -n], [2], 1). (End)
D-finite with recurrence 2*n*(2*n+1)*a(n) - 3*(3*n-1)*(3*n+1)*a(n-1) = 0. - R. J. Mathar, Feb 05 2013
a(n) = Sum_{r=0..n} C(n,r) * C(2*n+1,r). - J. M. Bergot, Mar 18 2014
From Peter Bala, Nov 04 2015: (Start)
a(n) = Sum_{k = 0..n} 1/(2*k + 1)*binomial(3*n - 3*k,n - k)*binomial(3*k, k).
O.g.f. equals f(x)*g(x), where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End)
a(n) = [x^n] 1/(1 - x)^(2*(n+1)). - Ilya Gutkovskiy, Oct 10 2017
O.g.f.: (i/24)*((4*sqrt(4 - 27*z) + 12*i*sqrt(3)*sqrt(z))^(2/3) - (4*sqrt(4 - 27*z) - 12*i*sqrt(3)*sqrt(z))^(2/3))*sqrt(3)*8^(1/3)*sqrt(4 - 27*z)/(sqrt(z)*(-4 + 27*z)), where i = sqrt(-1). - Karol A. Penson, Dec 13 2023
a(n-1) = (1/(4*n))*binomial(2*n, n)^2 * (1 - 3*((n - 1)/(n + 1))^3 + 5*((n - 1)*(n - 2)/((n + 1)*(n + 2)))^3 - 7*((n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)))^3 + - ...) for n >= 1. Cf. A112029. - Peter Bala, Aug 08 2024
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(4*n+2, k)*binomial(2*n-k, n-k). - Peter Bala, Sep 04 2025
a(n) ~ 3^(3*n+3/2) / (4^(n+1) * sqrt(Pi*n)). - Amiram Eldar, Sep 05 2025

Extensions

Simpler definition from Ira M. Gessel, May 26 2007. This change means that most of the offsets in the comments will now need to be changed too.

A173774 The arithmetic mean of (21*k + 8)*binomial(2*k,k)^3 (k=0..n-1).

Original entry on oeis.org

8, 120, 3680, 144760, 6427008, 306745824, 15364514880, 796663553400, 42395640372800, 2302336805317120, 127078484504270208, 7108177964254013920, 402042028998035350400, 22954860061516225396800
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 24 2010

Keywords

Comments

On Feb 10 2010, Zhi-Wei Sun introduced the sequence and conjectured that each term a(n) is an integer divisible by 4*binomial(2*n,n). On Feb 11 2011, Kasper Andersen confirmed this conjecture by noting that the sequence b(n) = a(n)/(4*binomial(2*n,n)), for n > 0, coincides with A112029. It was proved that for every prime p and positive integer a we have a(p^a) == 8 + 16*p^3*B_(p-3) (mod p^4), where B_0, B_1, B_2, ... are Bernoulli numbers. Given a prime p, it has been conjectured that Sum_{k=0..(p-1)/2} (21*k + 8)*binomial(2*k,k)^3 == 8*p + (-1)^((p-1)/2)*32*p^3*E_(p-3) (mod p^4) if p > 3 (where E_0, E_1, E_2, ... are Euler numbers), and that Sum_{k=0..floor(2p^a/3)} (21*k + 8)*binomial(2*k,k)^3 == 8*p^a (mod p^(a + 5 + (-1)^p)) if a is a positive integer with p^a == 1 (mod 3). He also observed that b(n) = a(n)/(4*binomial(2*n,n)) is odd if and only if n is a power of two.

Examples

			For n=2 we have a(2)=120 since (8*binomial(0,0)^3 + (21+8)*binomial(2,1)^3)/2 = 120.
		

Crossrefs

Programs

  • Magma
    [(&+[(21*j+8)*(j+1)^3*Catalan(j)^2: j in [0..n-1]])/n: n in [1..30]]; // G. C. Greubel, Jul 06 2021
    
  • Mathematica
    a[n_]:= Sum[(21*k+8)*Binomial[2*k,k]^3, {k,0,n-1}]/n; Table[a[n], {n, 25}]
  • Sage
    [(1/n)*sum((21*j+8)*binomial(2*j,j)^3 for j in (0..n-1)) for n in (1..30)] # G. C. Greubel, Jul 06 2021

Formula

a(n) = (1/n)*Sum_{k=0..n-1} (21*k + 8)*binomial(2*k,k)^3.
(n+1)*a(n+1) = n*a(n) + 8*(21*n + 8)*binomial(2*n-1, n)^3, n > 0, with a(1) = 8.
a(n) ~ 2^(6*n) / (3 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Jan 24 2019
a(n) = (1/n)*Sum_{j=0..n-1} (21*j + 8)*(j+1)^3*Catalan(j)^3. - G. C. Greubel, Jul 06 2021

A112028 a(n) = Sum_{k=0..n} binomial(n+k,k)^3.

Original entry on oeis.org

1, 9, 244, 9065, 389376, 18188478, 897376152, 46011772521, 2427553965160, 130930630643384, 7186614533569296, 400132290102421214, 22543708920891189136, 1282873288801683197250, 73628947696550668509744, 4257138240245923453355625, 247733479854085081062353400
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

References

  • M.J. Coster: Supercongruences, [Thesis] Univ. of Leiden, the Netherlands, 1988.

Crossrefs

A375178 is an essentially identical sequence.

Programs

  • Maple
    y2 := hypergeom([2/3, 2/3],[4/3],-x^2/27)*x^(1/3);
    h := hypergeom([1/4, 1/4],[1],64*x)^2;
    H := (243+247*x)*x*diff(h,x,x) + (463*x+234)*diff(h,x) + (48-24/x)*h;
    ogf := y2*Int(Int(y2*H,x)/(8*x*(x^2+27)*y2^2),x);
    # Check ogf by computing a series expansion:
    SER := proc(a, x) series(a, x, 20) end:
    INT := proc(a, x) int(SER(a, x), x) end:
    SER(eval(ogf, Int = INT), x); # Mark van Hoeij, Apr 04 2013
  • Mathematica
    Table[Sum[Binomial[n+k,k]^3,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Sep 24 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)^3); \\ Michel Marcus, Mar 09 2016

Formula

a(n) ~ 2^(6*n+3)/(7*(Pi*n)^(3/2)). - Vaclav Kotesovec, Nov 23 2012
Recurrence: 3*(3*n-1)*(3*n+1)*(15799*n^5 - 103177*n^4 + 265789*n^3 - 336367*n^2 + 208000*n - 49852)*n^3*a(n) = 24*(2*n-3)^3*(3*n-4)*(3*n-2)*(15799*n^5 - 24182*n^4 + 11071*n^3 - 72*n^2 - 1080*n + 192)*a(n-1) - (n-1)^2*(15799*n^5 - 103177*n^4 + 265789*n^3 - 336367*n^2 + 208000*n - 49852)*n^3*a(n-2) + 8*(n-2)^2*(2*n-3)^3*(15799*n^5 - 24182*n^4 + 11071*n^3 - 72*n^2 - 1080*n + 192)*a(n-3). - Vaclav Kotesovec, Nov 23 2012
O.g.f. can be expressed in terms of hypergeometric functions (see Maple program). - Mark van Hoeij, Apr 01 2013
From Peter Bala, Mar 29 2023: (Start)
The supercongruence a(p-1) == 1 (mod p^5) appears to hold for all primes p >= 7 (checked up to p = 199). Coster, Theorem 4, proves that a(p-1) == 1 (mod p^3) for primes p >= 5.
For r >= 2, the supercongruence a(p^r - 1) == a(p^(r-1) - 1) (mod p^(3*r+3)) may hold for all primes p >= 7. (End)

A219562 a(n) = Sum_{k=0..n} binomial(n+k,k)^4.

Original entry on oeis.org

1, 17, 1378, 170257, 25561876, 4294835666, 776487013506, 147812510671121, 29234435383857304, 5955068493838815892, 1241820686691538181636, 263946916625793118532050, 56996643356459050103185444, 12473214064899644269110156626, 2760963661677614009262282769378
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2012

Keywords

Crossrefs

Programs

  • Maple
    q := x-4+I*((x+4)*(16-x))^(1/2);
    f := x*(q/8)^4;
    s := ((q-2)/(8*I-6))^(1/4);
    y1 := hypergeom([1/8, 1/8], [3/4], f) * s / x^(1/8);
    r := 2/(x*((x+4)*(16-x))^(1/2)*y1^2);
    h := hypergeom([1/2, 1/2, 1/2, 1/2],[1, 1, 1],256*x);
    u := (15*(223*x+72)*x^2*diff(h,x,x,x)+(14579*x+3226)*x*diff(h,x,x)
    +(9969*x+1002)*diff(h,x)+320*h)/(16*(16-x)*(x+4)*x^2);
    ogf := y1^2*Int(r*(1+Int(r*Int(u/(r*y1)^2,x),x)),x) ;
    # Check o.g.f. by computing a series expansion:
    SER := proc(a,x) series(a,x,20) end:
    INT := proc(a,x) int(SER(a,x),x) end:
    SER(eval(ogf, Int = INT),x); # Mark van Hoeij, Apr 02 2013
  • Mathematica
    Table[Sum[Binomial[n+k,k]^4, {k,0,n}], {n,0,20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+k,k)^4); \\ Michel Marcus, Jul 15 2022

Formula

a(n) ~ 2^(8*n+4)/(15*Pi^2*n^2).
Recurrence: 4*(n-1)*(4*n-1)*(4*n+1)*(279825*n^6 - 2240985*n^5 + 7416081*n^4 - 12962383*n^3 + 12597634*n^2 - 6438500*n + 1347304)*n^4*a(n) = 2*(n-1)*(2290647450*n^12 - 22926837585*n^11 + 100717526436*n^10 - 254986993727*n^9 + 410380920831*n^8 - 435959897978*n^7 + 305660392723*n^6 - 134977315842*n^5 + 31413259700*n^4 + 2833672*n^3 - 2076143616*n^2 + 500898816*n - 39813120)*a(n-1) + (859902225*n^13 - 10755967005*n^12 + 60090860763*n^11 - 197381561581*n^10 + 422055067481*n^9 - 613861172995*n^8 + 615013106513*n^7 - 418396400175*n^6 + 182810864162*n^5 - 42759392772*n^4 + 146171272*n^3 + 2813432832*n^2 - 691172352*n + 55738368)*a(n-2) - 16*(n-2)^3*(2*n-3)^4*(279825*n^6 - 562035*n^5 + 408531*n^4 - 111409*n^3 - 5504*n^2 + 7968*n - 1024)*a(n-3).
G.f. as an expression in terms of 2F1 and 4F3 functions is given in the Maple program below. - Mark van Hoeij, Apr 02 2013
From Peter Bala, Nov 29 2024: (Start)
Conjecture: a(p-1) == 1 (mod p^5) for prime p >= 7 (checked up to p = 499). Coster, Theorem 4, proves that a(p-1) == 1 (mod p^3) for primes p >= 5.
Conjecture: for r >= 2, the supercongruence a(p^r - 1) == a(p^(r-1) - 1) (mod p^(3*r+3)) may hold for all primes p >= 5. Coster, Theorem 4, proves that a(p^r -1) == a(p^(r-1) - 1) (mod p^(3*r)) for r >= 2 and all primes p >= 5. (End)

A219563 Sum(binomial(n+k,k)^5, k=0..n).

Original entry on oeis.org

1, 33, 8020, 3301025, 1733984376, 1048567813062, 694995078406056, 491336887915201185, 364377975224032162000, 280380150421755638519408, 222165159124597435189467696, 180288439972217748901049985158, 149230751849318301857448761484400, 125602423480863080624602495191566250
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+k,k]^5, {k,0,n}], {n,0,20}]

Formula

a(n) ~ 2^(10*n+5)/(31*(Pi*n)^(5/2)).

A219564 Sum(binomial(n+k,k)^6, k=0..n).

Original entry on oeis.org

1, 65, 47386, 65004097, 119498671876, 260128695981674, 632156164654144530, 1659900189891175027265, 4616088190888638302435080, 13418259230056806455830305940, 40401802613222456104862752944356, 125182282922559710456869140648653290, 397195659937314116991934285462527257236
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2012

Keywords

Crossrefs

Cf. A001700 (q=1), A112029 (q=2), A112028 (q=3), A219562 (q=4), A219563 (q=5).

Programs

  • Mathematica
    Table[Sum[Binomial[n+k,k]^6, {k,0,n}], {n,0,20}]

Formula

a(n) ~ 2^(12*n+6)/(63*Pi^3*n^3)
Generally (for q > 0), Sum_{k=0..n} C(n + k,k)^q is asymptotic to 2^((2*n+1)*q)/((2^q-1)*(Pi*n)^(q/2)) * (1 - q/(2*n)*(1/4+1/(2^q-1)^2) + O(1/n^2))

A176335 Central coefficients T(2n,n) of number triangle A176331.

Original entry on oeis.org

1, 3, 28, 315, 3876, 50358, 678112, 9365499, 131809060, 1882294128, 27193657008, 396600597198, 5829739893264, 86262567856650, 1283677784658528, 19196304797150715, 288295493121264420, 4346056823245242420
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    List([0..30], n-> T(2*n,n) ); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [T(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    A176335 := proc(n)
        add((-1)^k*binomial(k,n)^2,k=0..2*n);
    end proc: # R. J. Mathar, Feb 10 2015
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[2*n, n], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
    vector(31, n, T(2*(n-1), n-1) ) \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [T(2*n, n) for n in (0..30)] # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = Sum_{k=0..2n} C(k,n)^2*(-1)^k.
Conjecture: 224*n^2*(n-1)*a(n) - 48*(n-1)*(65*n^2 - 36*n - 13)*a(n-1) + 4*(-1839*n^3 + 11081*n^2 - 21932*n + 14280)*a(n-2) + 12*(-81*n^3 + 326*n^2 - 591*n + 562)*a(n-3) - (n-3)*(1853*n^2 - 7403*n + 7140)*a(n-4) - 12*(n-4)*(2*n-7)^2*a(n-5) = 0. - R. J. Mathar, Feb 10 2015
From Peter Bala, Aug 08 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n+k, k)^2. Cf. A112029.
Conjecture (assuming an offset of 1): the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 5 and all positive integers n and r [added Nov 29 2024: proved by Coster. See Theorem 4]. (End)
a(n) ~ 2^(4*n+2) / (5*Pi*n). - Vaclav Kotesovec, Aug 08 2024
a(n) = binomial(2*n, n)^2 * hypergeom([1, -n, -n], [-2*n, -2*n], -1). - Peter Luschny, Nov 29 2024

A110197 Number triangle of sums of squared binomial coefficients.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 14, 10, 1, 5, 30, 46, 17, 1, 6, 55, 146, 117, 26, 1, 7, 91, 371, 517, 251, 37, 1, 8, 140, 812, 1742, 1476, 478, 50, 1, 9, 204, 1596, 4878, 6376, 3614, 834, 65, 1, 10, 285, 2892, 11934, 22252, 19490, 7890, 1361, 82, 1, 11, 385, 4917, 26334, 66352, 82994, 51990, 15761, 2107, 101, 1
Offset: 0

Views

Author

Paul Barry, Jul 15 2005

Keywords

Comments

Alternatively, number square T(n,k) = Sum_{i=0..n} binomial(i+k,k)^2 read by antidiagonals.

Examples

			Rows start:
  1;
  2,   1;
  3,   5,   1;
  4,  14,  10,   1;
  5,  30,  46,  17,   1;
  6,  55, 146, 117,  26,   1;
  ...
		

Crossrefs

Row sums are A006134.
Antidiagonal sums are A110198.
T(2n,n) gives A112029.

Programs

  • PARI
    T(n,k) = sum(i=0, n-k, binomial(i+k,k)^2);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print();); \\ Michel Marcus, Dec 03 2016

Formula

T(n,k) = Sum_{i=0..n-k} binomial(i+k,k)^2.
G.f.: 1/((1-x)*sqrt(x^2*y^2-2*x^2*y-2*x*y+x^2-2*x+1)). - Vladimir Kruchinin, Mar 20 2025

A119307 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, k)*C(j, n - k).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 46, 19, 1, 1, 29, 127, 127, 29, 1, 1, 41, 281, 517, 281, 41, 1, 1, 55, 541, 1579, 1579, 541, 55, 1, 1, 71, 946, 4001, 6376, 4001, 946, 71, 1, 1, 89, 1541, 8889, 20626, 20626, 8889, 1541, 89, 1, 1, 109, 2377, 17907, 56904, 82994
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Examples

			Triangle begins
  1,
  1, 1,
  1, 5, 1,
  1, 11, 11, 1,
  1, 19, 46, 19, 1,
  1, 29, 127, 127, 29, 1,
  1, 41, 281, 517, 281, 41, 1
  ...
		

Crossrefs

Second column is A028387.
Row sums are A014300.
Central coefficients T(2*n, n) are A112029.

Programs

  • Maple
    T := (n, k) -> if n = k then 1 else binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) fi: for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
    # Peter Luschny, May 13 2024
  • Mathematica
    Flatten[Table[Sum[Binomial[j,k] Binomial[j,n-k],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    tabl(nn)={for (n=0, nn, for(k=0, n, print1(sum(j=0, n, binomial(j,k)*binomial(j,n-k)),", ");); print(););};
    tabl(10); \\ Indranil Ghosh, Mar 03 2017

Formula

T(n, k) = T(n, n - k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) for k=0..n-1. - Peter Luschny, May 13 2024

A295612 a(n) = Sum_{k=0..n} binomial(n+k,k)^k.

Original entry on oeis.org

1, 3, 40, 8105, 24053106, 1016507243472, 622366942086680904, 5608321882919220905812521, 752711651805019773658037206391596, 1518219710649896586598445898967340890577318, 46343146356260529633020448755386347142785083052620084
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + k, k]^k, {k, 0, n}], {n, 0, 10}]
    Table[Sum[((n + k)!/(n! k!))^k, {k, 0, n}], {n, 0, 10}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+k,k)^k); \\ Michel Marcus, Nov 25 2017

Formula

a(n) = Sum_{k=0..n} A046899(n,k)^k.
a(n) ~ 2^(2*n^2) / (exp(1/8) * Pi^(n/2) * n^(n/2)). - Vaclav Kotesovec, Nov 25 2017
Showing 1-10 of 13 results. Next