A112029
a(n) = Sum_{k=0..n} binomial(n+k, k)^2.
Original entry on oeis.org
1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. Baldassarri, S. Bosch, B. Dwork, (eds), p-adic Analysis. Lecture Notes in Mathematics, vol. 1454, pp. 194 - 204, Springer, Berlin, Heidelberg.
- Matthijs J. Coster, Supercongruences.
- C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.
- Vaclav Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012
- Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016.
-
[(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
-
f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
ord := 30;
ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
# Mark van Hoeij, Mar 27 2013
-
Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
-
a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
-
[sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
A112028
a(n) = Sum_{k=0..n} binomial(n+k,k)^3.
Original entry on oeis.org
1, 9, 244, 9065, 389376, 18188478, 897376152, 46011772521, 2427553965160, 130930630643384, 7186614533569296, 400132290102421214, 22543708920891189136, 1282873288801683197250, 73628947696550668509744, 4257138240245923453355625, 247733479854085081062353400
Offset: 0
- M.J. Coster: Supercongruences, [Thesis] Univ. of Leiden, the Netherlands, 1988.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. Baldassarri, S. Bosch, B. Dwork, (eds), p-adic Analysis. Lecture Notes in Mathematics, vol. 1454, pp. 194 - 204, Springer, Berlin, Heidelberg.
- Matthijs Coster, Supercongruences.
- C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.
- Vaclav Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012
A375178 is an essentially identical sequence.
-
y2 := hypergeom([2/3, 2/3],[4/3],-x^2/27)*x^(1/3);
h := hypergeom([1/4, 1/4],[1],64*x)^2;
H := (243+247*x)*x*diff(h,x,x) + (463*x+234)*diff(h,x) + (48-24/x)*h;
ogf := y2*Int(Int(y2*H,x)/(8*x*(x^2+27)*y2^2),x);
# Check ogf by computing a series expansion:
SER := proc(a, x) series(a, x, 20) end:
INT := proc(a, x) int(SER(a, x), x) end:
SER(eval(ogf, Int = INT), x); # Mark van Hoeij, Apr 04 2013
-
Table[Sum[Binomial[n+k,k]^3,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Sep 24 2012 *)
-
a(n) = sum(k=0, n, binomial(n+k, k)^3); \\ Michel Marcus, Mar 09 2016
A219563
Sum(binomial(n+k,k)^5, k=0..n).
Original entry on oeis.org
1, 33, 8020, 3301025, 1733984376, 1048567813062, 694995078406056, 491336887915201185, 364377975224032162000, 280380150421755638519408, 222165159124597435189467696, 180288439972217748901049985158, 149230751849318301857448761484400, 125602423480863080624602495191566250
Offset: 0
-
Table[Sum[Binomial[n+k,k]^5, {k,0,n}], {n,0,20}]
A219564
Sum(binomial(n+k,k)^6, k=0..n).
Original entry on oeis.org
1, 65, 47386, 65004097, 119498671876, 260128695981674, 632156164654144530, 1659900189891175027265, 4616088190888638302435080, 13418259230056806455830305940, 40401802613222456104862752944356, 125182282922559710456869140648653290, 397195659937314116991934285462527257236
Offset: 0
-
Table[Sum[Binomial[n+k,k]^6, {k,0,n}], {n,0,20}]
A295612
a(n) = Sum_{k=0..n} binomial(n+k,k)^k.
Original entry on oeis.org
1, 3, 40, 8105, 24053106, 1016507243472, 622366942086680904, 5608321882919220905812521, 752711651805019773658037206391596, 1518219710649896586598445898967340890577318, 46343146356260529633020448755386347142785083052620084
Offset: 0
-
Table[Sum[Binomial[n + k, k]^k, {k, 0, n}], {n, 0, 10}]
Table[Sum[((n + k)!/(n! k!))^k, {k, 0, n}], {n, 0, 10}]
-
a(n) = sum(k=0, n, binomial(n+k,k)^k); \\ Michel Marcus, Nov 25 2017
A336829
a(n) = Sum_{k=0..n} binomial(n+k,k)^n.
Original entry on oeis.org
1, 3, 46, 9065, 25561876, 1048567813062, 632156164654144530, 5652307059542612442465921, 755658094192422806457805924637704, 1521188219372604726826961340683399629967888, 46388428590466766659538640978460161019178279424832676
Offset: 0
-
[(&+[Binomial(2*n-j,n)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
-
Table[Sum[Binomial[n + k, k]^n, {k, 0, n}], {n, 0, 10}]
-
a(n) = sum(k=0, n, binomial(n+k, k)^n); \\ Michel Marcus, Aug 05 2020
-
def A336829(n): return sum(binomial(2*n-j, n)^n for j in (0..n))
[A336829(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
Showing 1-6 of 6 results.