cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A336873 a(n) = Sum_{k=0..n} (binomial(n+k,k) * binomial(n,k))^n.

Original entry on oeis.org

1, 3, 73, 36729, 473940001, 155741521320033, 1453730786373283012225, 415588116056535702096428038017, 3278068950996636050857475073848209555969, 756475486389705843580676191270930552553654909184513, 5850304627708628483969594929628923064185219454493588333628772353
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2020

Keywords

Crossrefs

Programs

  • Magma
    [(&+[(Binomial(2*j,j)*Binomial(n+j,n-j))^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
    
  • Mathematica
    a[n_] := Sum[(Binomial[n+k, k] * Binomial[n, k])^n, {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, Aug 06 2020 *)
  • PARI
    {a(n) = sum(k=0, n, (binomial(n+k,k)*binomial(n,k))^n)}
    
  • SageMath
    def A336873(n): return sum((binomial(2*j,j)*binomial(n+j, n-j))^n for j in (0..n))
    [A336873(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022

Formula

a(n)^(1/n) ~ (1 + sqrt(2))^(2*n + 1) / (Pi*sqrt(2)*n). - Vaclav Kotesovec, Jul 10 2021
Showing 1-1 of 1 results.