A112029
a(n) = Sum_{k=0..n} binomial(n+k, k)^2.
Original entry on oeis.org
1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. Baldassarri, S. Bosch, B. Dwork, (eds), p-adic Analysis. Lecture Notes in Mathematics, vol. 1454, pp. 194 - 204, Springer, Berlin, Heidelberg.
- Matthijs J. Coster, Supercongruences.
- C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.
- Vaclav Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012
- Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016.
-
[(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
-
f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
ord := 30;
ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
# Mark van Hoeij, Mar 27 2013
-
Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
-
a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
-
[sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
A176331
Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, n-k) * C(j, k) * (-1)^(n - j).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 28, 13, 1, 1, 21, 79, 79, 21, 1, 1, 31, 181, 315, 181, 31, 1, 1, 43, 361, 971, 971, 361, 43, 1, 1, 57, 652, 2511, 3876, 2511, 652, 57, 1, 1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1, 1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 13, 28, 13, 1;
1, 21, 79, 79, 21, 1;
1, 31, 181, 315, 181, 31, 1;
1, 43, 361, 971, 971, 361, 43, 1;
1, 57, 652, 2511, 3876, 2511, 652, 57, 1;
1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1;
1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1;
Central coefficients T(2*n, n) are
A176335.
-
T:= function(n,k)
return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 07 2019
-
T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
-
T:= proc(n, k) option remember; add( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k), j=0..n); end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 07 2019
T := (n, k) -> binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1):
seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9); # Peter Luschny, May 13 2024
-
T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 07 2019 *)
-
T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k)); \\ G. C. Greubel, Dec 07 2019
-
@CachedFunction
def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
A176334
Diagonal sums of number triangle A176331.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 51, 124, 305, 755, 1879, 4698, 11792, 29694, 74984, 189811, 481498, 1223713, 3115200, 7942134, 20275362, 51823246, 132604193, 339644739, 870745187, 2234208932, 5737129623, 14742751524, 37909928908, 97543380598
Offset: 0
-
T:= function(n,k)
return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
end;
List([0..30], n-> Sum([0..Int(n/2)], j-> T(n-j,j) )); # G. C. Greubel, Dec 07 2019
-
T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
[(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Dec 07 2019
-
A176334 := proc(n)
add(add(binomial(j,n-2*k)*binomial(j,k)*(-1)^(n-k-j),j=0..n-k), k=0..floor(n/2)) ;
end proc: # R. J. Mathar, Feb 10 2015
-
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
-
T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
vector(30, n, sum(j=0, (n-1)\2, T(n-j-1,j)) ) \\ G. C. Greubel, Dec 07 2019
-
@CachedFunction
def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
[sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Dec 07 2019
A375178
a(n) = Sum_{k = 0..n-1} binomial(n+k-1, k)^3 (same as A112028 with an extra 0 at the start).
Original entry on oeis.org
0, 1, 9, 244, 9065, 389376, 18188478, 897376152, 46011772521, 2427553965160, 130930630643384, 7186614533569296, 400132290102421214, 22543708920891189136, 1282873288801683197250, 73628947696550668509744, 4257138240245923453355625, 247733479854085081062353400, 14498252738780732999484606360
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 897376152 - 1 = (7^5)*107*499 == 0 (mod 7^5)
a(11) - a(1) = 7186614533569296 - 1 = 5*(11^5)*8924644409 == 0 (mod 11^5).
A382849
a(n) = Sum_{k=0..n} (-1)^(n-k) * (binomial(n,k) * binomial(n+k,k))^2.
Original entry on oeis.org
1, 3, 1, -357, -6999, -62997, 444529, 27783003, 508019689, 3206511003, -89889084999, -3274278527517, -49395223500999, -66079827133317, 16197028704290001, 433384098559415643, 4988878584849669609, -35687369703800052357, -2815548294132454060151, -58942279760573467233357
Offset: 0
-
Table[Sum[(-1)^(n - k) (Binomial[n, k] Binomial[n + k, k])^2, {k, 0, n}], {n, 0, 19}]
Table[(-1)^n HypergeometricPFQ[{-n, -n, n + 1, n + 1}, {1, 1, 1}, -1], {n, 0, 19}]
Table[SeriesCoefficient[1/(1 - y + z + x y + z w + x z + x y w + x y z w), {x, 0, n}, {y, 0, n}, {z, 0, n}, {w, 0, n}], {n, 0, 19}]
Showing 1-5 of 5 results.
Comments