cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A112029 a(n) = Sum_{k=0..n} binomial(n+k, k)^2.

Original entry on oeis.org

1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
    
  • Maple
    f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
    H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
    ord := 30;
    ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
    # Mark van Hoeij, Mar 27 2013
  • Mathematica
    Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
  • Sage
    [sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
    

Formula

a(n) ~ 2^(4*n+2)/(3*Pi*n). - Vaclav Kotesovec, Nov 23 2012
Recurrence: 2*(2*n+1)*(21*n-13)*n^2*a(n) = (1365*n^4 - 1517*n^3 + 240*n^2 + 216*n - 64)*a(n-1) - 4*(n-1)*(2*n-1)^2*(21*n+8)*a(n-2). - Vaclav Kotesovec, Nov 23 2012
G.f.: see Maple code. - Mark van Hoeij, Mar 27 2013
a(p-1) == 1 (mod p^3) for all primes p >= 5. See the comments in A173774. - Peter Bala, Jul 12 2024
a(n-1) = 1/(4*n) * binomial(2*n, n)^2 * ( 1 + 3*((n - 1)/(n + 1))^3 + 5*((n - 1)*(n - 2)/((n + 1)*(n + 2)))^3 + 7*((n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)))^3 + ... ) for n >= 1. - Peter Bala, Jul 22 2024
a(m*p^r - 1) == a(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and positive integers m and r. See Coster, Theorem 4. - Peter Bala, Nov 29 2024
a(n) = A110197(2n,n). - Alois P. Heinz, Mar 21 2025

A176331 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, n-k) * C(j, k) * (-1)^(n - j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 28, 13, 1, 1, 21, 79, 79, 21, 1, 1, 31, 181, 315, 181, 31, 1, 1, 43, 361, 971, 971, 361, 43, 1, 1, 57, 652, 2511, 3876, 2511, 652, 57, 1, 1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1, 1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  3,    1;
  1,  7,    7,     1;
  1, 13,   28,    13,     1;
  1, 21,   79,    79,    21,     1;
  1, 31,  181,   315,   181,    31,     1;
  1, 43,  361,   971,   971,   361,    43,     1;
  1, 57,  652,  2511,  3876,  2511,   652,    57,    1;
  1, 73, 1093,  5713, 12606, 12606,  5713,  1093,   73,  1;
  1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1;
		

Crossrefs

Row sums are A176332.
Diagonal sums are A176334.
Central coefficients T(2*n, n) are A176335.

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    T:= proc(n, k) option remember; add( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k), j=0..n); end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Dec 07 2019
    T := (n, k) -> binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9); # Peter Luschny, May 13 2024
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k)); \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
    

Formula

T(n, k) = T(n, n-k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1). - Peter Luschny, May 13 2024

A176334 Diagonal sums of number triangle A176331.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 124, 305, 755, 1879, 4698, 11792, 29694, 74984, 189811, 481498, 1223713, 3115200, 7942134, 20275362, 51823246, 132604193, 339644739, 870745187, 2234208932, 5737129623, 14742751524, 37909928908, 97543380598
Offset: 0

Views

Author

Paul Barry, Apr 15 2010

Keywords

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) );
      end;
    List([0..30], n-> Sum([0..Int(n/2)], j-> T(n-j,j) )); # G. C. Greubel, Dec 07 2019
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >;
    [(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    A176334 := proc(n)
        add(add(binomial(j,n-2*k)*binomial(j,k)*(-1)^(n-k-j),j=0..n-k), k=0..floor(n/2)) ;
    end proc: # R. J. Mathar, Feb 10 2015
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Dec 07 2019 *)
  • PARI
    T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k));
    vector(30, n, sum(j=0, (n-1)\2, T(n-j-1,j)) ) \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    @CachedFunction
    def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n))
    [sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Dec 07 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j,n-2k)*C(j,k)*(-1)^(n-k-j).
a(n) ~ phi^(2*n+3) / (4*5^(1/4)*sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 08 2024

A375178 a(n) = Sum_{k = 0..n-1} binomial(n+k-1, k)^3 (same as A112028 with an extra 0 at the start).

Original entry on oeis.org

0, 1, 9, 244, 9065, 389376, 18188478, 897376152, 46011772521, 2427553965160, 130930630643384, 7186614533569296, 400132290102421214, 22543708920891189136, 1282873288801683197250, 73628947696550668509744, 4257138240245923453355625, 247733479854085081062353400, 14498252738780732999484606360
Offset: 0

Views

Author

Peter Bala, Aug 03 2024

Keywords

Comments

Compare with the identity Sum_{k = 0..n-1} binomial(n+k-1, k) = (1/2) * binomial(2*n, n) = (1/2) * A000984(n) for n >= 1.
The central binomial coefficients satisfy the supercongruence (1/2) * binomial(2*p, p) == 1 (mod p^3) for all primes p >= 5 (Wolstenholme's theorem).
For prime p, binomial(p+k-1, k) == 0 (mod p) for 1 <= k <= p-1. It follows that a(p) == 1 (mod p^3) for all primes p. We conjecture that, in fact, the stronger congruence a(p) == 1 (mod p^5) holds for all primes p >= 7.
Further, we conjecture that for r >= 2 and prime p >= 5, a(p^r) == a(p^(r-1)) (mod p^(3*r+3)).
More generally, for a positive integer m, define a sequence {b_m(n) : n >= 0} by setting b_m(n) = Sum_{k = 0..n-1} binomial(n+k-1, k)^(2*m+1). Then the congruence b_m(p) == 1 (mod p^(2*m+1)) clearly holds for all primes p. We conjecture that the stronger supercongruence b_m(p) == 1 (mod p^(2*m+3)) holds for all primes p >= 2*m + 5, and for r >= 2, the supercongruence b_m(p^r) == b_m(p^(r-1)) (mod p^(3*r+2*m+1)) also holds for all primes p >= 2*m + 5.
Essentially a duplicate of A112028.

Examples

			Examples of supercongruences:
a(7) - a(1) = 897376152 - 1 = (7^5)*107*499 == 0 (mod 7^5)
a(11) - a(1) = 7186614533569296 - 1 = 5*(11^5)*8924644409 == 0 (mod 11^5).
		

Crossrefs

Programs

  • Maple
    seq(add( binomial(n+k-1, k)^3, k = 0..n-1), n = 0..20);

Formula

a(n) = Sum_{k = 0..n-1} (-1)^k * binomial(-n, k)^3.
a(n) ~ 2^(6*n-3)/(7*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Aug 03 2024

A382849 a(n) = Sum_{k=0..n} (-1)^(n-k) * (binomial(n,k) * binomial(n+k,k))^2.

Original entry on oeis.org

1, 3, 1, -357, -6999, -62997, 444529, 27783003, 508019689, 3206511003, -89889084999, -3274278527517, -49395223500999, -66079827133317, 16197028704290001, 433384098559415643, 4988878584849669609, -35687369703800052357, -2815548294132454060151, -58942279760573467233357
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2025

Keywords

Comments

Diagonal of the rational function 1 / (1 - y + z + x*y + z*w + x*z + x*y*w + x*y*z*w).

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) (Binomial[n, k] Binomial[n + k, k])^2, {k, 0, n}], {n, 0, 19}]
    Table[(-1)^n HypergeometricPFQ[{-n, -n, n + 1, n + 1}, {1, 1, 1}, -1], {n, 0, 19}]
    Table[SeriesCoefficient[1/(1 - y + z + x y + z w + x z + x y w + x y z w), {x, 0, n}, {y, 0, n}, {z, 0, n}, {w, 0, n}], {n, 0, 19}]
Showing 1-5 of 5 results.