cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110198 Antidiagonal sums of number triangle A110197.

Original entry on oeis.org

1, 2, 4, 9, 20, 46, 109, 262, 638, 1569, 3886, 9680, 24225, 60856, 153368, 387573, 981742, 2491934, 6336721, 16139616, 41166912, 105139773, 268841100, 688157430, 1763206441, 4521749642, 11605580290, 29809644693, 76621733444, 197074591420, 507193044993
Offset: 0

Views

Author

Paul Barry, Jul 15 2005

Keywords

Comments

Partial sums of A051286.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

G.f.: 1/((1-x)*sqrt((1+x+x^2)*(1-3x+x^2))); a(n) = sum{k=0..floor(n/2), sum{i=0..n-2k, binomial(i+k, k)^2}}.
a(n) = sum{i=0..2n, A202411(i)}. - Peter Luschny, Jan 16 2012
Conjecture: n*a(n) +(-3*n+1)*a(n-1) +n*a(n-2) +(-n+2)*a(n-3) +(3*n-5)*a(n-4) +(-n+2)*a(n-5)=0. - R. J. Mathar, Nov 15 2012
a(n) ~ sqrt(100+45*sqrt(5)) * ((sqrt(5)+3)/2)^n / (10*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 08 2014
Equivalently, a(n) ~ phi^(2*n + 3) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021

A112029 a(n) = Sum_{k=0..n} binomial(n+k, k)^2.

Original entry on oeis.org

1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
    
  • Maple
    f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
    H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
    ord := 30;
    ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
    # Mark van Hoeij, Mar 27 2013
  • Mathematica
    Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
  • Sage
    [sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
    

Formula

a(n) ~ 2^(4*n+2)/(3*Pi*n). - Vaclav Kotesovec, Nov 23 2012
Recurrence: 2*(2*n+1)*(21*n-13)*n^2*a(n) = (1365*n^4 - 1517*n^3 + 240*n^2 + 216*n - 64)*a(n-1) - 4*(n-1)*(2*n-1)^2*(21*n+8)*a(n-2). - Vaclav Kotesovec, Nov 23 2012
G.f.: see Maple code. - Mark van Hoeij, Mar 27 2013
a(p-1) == 1 (mod p^3) for all primes p >= 5. See the comments in A173774. - Peter Bala, Jul 12 2024
a(n-1) = 1/(4*n) * binomial(2*n, n)^2 * ( 1 + 3*((n - 1)/(n + 1))^3 + 5*((n - 1)*(n - 2)/((n + 1)*(n + 2)))^3 + 7*((n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)))^3 + ... ) for n >= 1. - Peter Bala, Jul 22 2024
a(m*p^r - 1) == a(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and positive integers m and r. See Coster, Theorem 4. - Peter Bala, Nov 29 2024
a(n) = A110197(2n,n). - Alois P. Heinz, Mar 21 2025
Showing 1-2 of 2 results.