cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173794 Partial sums of A006384.

Original entry on oeis.org

1, 3, 7, 21, 78, 390, 2461, 17491, 135226, 1103076, 9371892, 82205622, 740254762, 6814312822, 63920746639, 609452784251, 5894288690288, 57728196873452, 571747727911362, 5719672404523644, 57737110684330278, 587604181217075742
Offset: 0

Views

Author

Jonathan Vos Post, Feb 24 2010

Keywords

Comments

Partial sums of number of planar maps with n edges. The subsequence of primes in this partial sum begins: 3, 7, 17491, and no more known.

Examples

			a(21) = 1 + 2 + 4 + 14 + 57 + 312 + 2071 + 15030 + 117735 + 967850 + 8268816 + 72833730 + 658049140 + 6074058060 + 57106433817 + 545532037612 + 5284835906037 + 51833908183164 + 514019531037910 + 5147924676612282 + 52017438279806634 + 529867070532745464.
		

Crossrefs

Programs

  • Mathematica
    q[n_?OddQ]:= 3^((n-1)/2)*CatalanNumber[(n-1)/2];
    q[n_?EvenQ]:= 3^((n-2)/2)*(2*(n-1)/(n+2))*CatalanNumber[(n-2)/2];
    f[n_]:= f[n]= Sum[EulerPhi[n/k]*3^k*Binomial[2*k, k], {k, Most[Divisors[n]]}];
    A006384[n_]:= If[n==0, 1, (1/(2*n))*(2*(3^n/(n+2))*CatalanNumber[n] +f[n] + 2*n*q[n])];
    Table[Sum[A006384[j], {j,0,n}], {n,0,50}] (* G. C. Greubel, Jul 14 2021 *)

Formula

a(n) = Sum_{i=0..n} A006384(i).