A173811 a(n) = (8*10^n - 53)/9 for n > 0.
3, 83, 883, 8883, 88883, 888883, 8888883, 88888883, 888888883, 8888888883, 88888888883, 888888888883, 8888888888883, 88888888888883, 888888888888883, 8888888888888883, 88888888888888883, 888888888888888883, 8888888888888888883, 88888888888888888883, 888888888888888888883
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Cf. A093166.
Programs
-
Magma
[(8*10^n-53)/9: n in [1..20]]; // Vincenzo Librandi, Jul 05 2012
-
Mathematica
NestList[10#+53&,3,20] (* Harvey P. Dale, Jun 13 2011 *) CoefficientList[Series[(3+50*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 05 2012 *)
Formula
a(n) = 10*a(n-1) + 53 for n > 0, a(0) = -5.
From Vincenzo Librandi, Jul 05 2012: (Start)
G.f.: x*(3+50*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2). (End)
E.g.f.: exp(x)*(8*exp(9*x) - 53)/9. - Elmo R. Oliveira, Sep 09 2024