cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173820 Coefficients of characteristic polynomials of Hadamard Cartan F_2 self-similar 2^n matrices:M={{2, -1}, {-2, 2}}.

Original entry on oeis.org

1, 2, -4, 1, 16, -64, 56, -16, 1, 4096, -32768, 75776, -77824, 39296, -9728, 1184, -64, 1, 4294967296, -68719476736, 375809638400, -1043677052928, 1696981843968, -1726845288448, 1143073669120, -506453819392, 152912134144, -31653363712
Offset: 0

Views

Author

Roger L. Bagula, Feb 25 2010

Keywords

Comments

Row sums are:
{1, -1, -7, -31, -208289151, 199276356275696712709633,
-27294457550222463310332530871924308277403810665846783,...}.

Examples

			{1},
{2, -4, 1},
{ 16, -64, 56, -16, 1},
{4096, -32768, 75776, -77824, 39296, -9728, 1184, -64, 1}, ...
		

Crossrefs

Programs

  • Mathematica
    Clear[HadamardMatrix];
    MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]]
    KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
    M1 = M;
    N1 = N;
    LM = Length[M1];
    LN = Length[N1];
    Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
    Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
    N2 = {};
    Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
    N2 = Flatten[N2];
    Partition[N2, LM*LN, LM*LN]]
    HadamardMatrix[2] := {{2, -1}, {-2, 2}}
    HadamardMatrix[n_] := Module[{m},
    m = {{2, -1}, {-2, 2}};
    KroneckerProduct[m, HadamardMatrix[n/2]]]
    Table[HadamardMatrix[2^n], {n, 1, 4}]
    Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[ HadamardMatrix[2^n], x], x], {n, 1, 6}]]
    Flatten[%]

Formula

M(2)={{2, -1}, {-2, 2}};
M(4)={{4, -2, -2, 1}, {-4, 4, 2, -2}, {-4, 2, 4, -2}, {4, -4, -4, 4}},etc.