cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A173828 Primes p such that p-+(floor(Sqrt(p)))^2 are primes.

Original entry on oeis.org

7, 43, 47, 67, 149, 163, 167, 337, 353, 487, 587, 617, 787, 911, 947, 1367, 1777, 1783, 2333, 2347, 2503, 2927, 2953, 2963, 3023, 3607, 3613, 3637, 3643, 3697, 3709, 3847, 4363, 4397, 4423, 4463, 4483, 4903, 5273, 6113, 6143, 6197, 7103, 7187, 7193, 8117
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f1[n_]:=n-(Floor[Sqrt[n]])^2;f2[n_]:=n+(Floor[Sqrt[n]])^2;lst={};Do[p=Prime[n];If[PrimeQ[f1[p]]&&PrimeQ[f2[p]],AppendTo[lst,p]],{n,8!}];lst
    fQ[n_]:=Module[{c=Floor[Sqrt[n]]^2},AllTrue[n+{c,-c},PrimeQ]]; Select[ Prime[ Range[1200]],fQ] (* Harvey P. Dale, Dec 15 2021 *)
Showing 1-1 of 1 results.