cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173882 Triangle T(n, k) = A090443(n-1)/(A090443(k-1)*A090443(n-k-1)) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 240, 60, 1, 1, 120, 1200, 1200, 120, 1, 1, 210, 4200, 10500, 4200, 210, 1, 1, 336, 11760, 58800, 58800, 11760, 336, 1, 1, 504, 28224, 246960, 493920, 246960, 28224, 504, 1, 1, 720, 60480, 846720, 2963520, 2963520, 846720, 60480, 720, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 01 2010

Keywords

Comments

A090443 is defined as +1 at negative indices here, which keeps the definition valid in the range 0 <= k <= n.
Row sums are 1, 2, 8, 50, 362, 2642, 19322, 141794, 1045298, 7742882, ....

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   6,      1;
  1,  24,     24,       1;
  1,  60,    240,      60,        1;
  1, 120,   1200,    1200,      120,        1;
  1, 210,   4200,   10500,     4200,      210,        1;
  1, 336,  11760,   58800,    58800,    11760,      336,       1;
  1, 504,  28224,  246960,   493920,   246960,    28224,     504,      1;
  1, 720,  60480,  846720,  2963520,  2963520,   846720,   60480,    720,   1;
  1, 990, 118800, 2494800, 13970880, 24449040, 13970880, 2494800, 118800, 990, 1;
  ...
		

Crossrefs

Cf. A056939.

Programs

  • Magma
    T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n-1,k-1)*Binomial(n,k)*Binomial(n+1,k+1)*(n-k)/(n-k+1) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
    
  • Maple
    A090443 := proc(n) (n+2)!*(n+1)!*n!/2 ; end proc:
    A173882 := proc(n,m) if m=0 or m= n then 1; else A090443(n-1)/A090443(m-1)/A090443(n-m-1) ; end if; end proc:
    seq(seq(A173882(n,m),m=0..n),n=0..5) ; # R. J. Mathar, Mar 19 2011
  • Mathematica
    T[n_,k_]:= If[k==0||k==n, 1, 2*Binomial[n-1,k-1]*Binomial[n,k]*Binomial[n+1,k+1]*(n-k)/(n-k+1)];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 17 2021 *)
  • Sage
    def T(n,k): return 1 if (k==0 or k==n) else 2*binomial(n-1,k-1)*binomial(n,k)*binomial(n+1,k+1)*(n-k)/(n-k+1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021

Formula

T(n, k) = 2*binomial(n-1,k-1)*binomial(n,k)*binomial(n+1,k+1)*(n-k)/(n-k+1) with T(n, 0) = T(n, n) = 1.
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} (j-1)*j*(j+1) = (n-1)!*n!*(n+1)!/2 and c(0) = c(1) = 1.