A173898 Decimal expansion of sum of the reciprocals of the Mersenne primes.
5, 1, 6, 4, 5, 4, 1, 7, 8, 9, 4, 0, 7, 8, 8, 5, 6, 5, 3, 3, 0, 4, 8, 7, 3, 4, 2, 9, 7, 1, 5, 2, 2, 8, 5, 8, 8, 1, 5, 9, 6, 8, 5, 5, 3, 4, 1, 5, 4, 1, 9, 7, 0, 1, 4, 4, 1, 9, 3, 1, 0, 6, 5, 2, 7, 3, 5, 6, 8, 7, 0, 1, 4, 4, 0, 2, 1, 2, 7, 2, 3, 4, 9, 9, 1, 5, 4, 8, 8, 3, 2, 9, 3, 6, 6, 6, 2, 1, 5, 3, 7, 4, 0, 3, 2, 4
Offset: 0
Examples
Decimal expansion of (1/3) + (1/7) + (1/31) + (1/127) + (1/8191) + (1/131071) + (1/524287) + ... = .5164541789407885653304873429715228588159685534154197. This has continued fraction expansion 0 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + ...)))) (see A209601).
Links
- Peter B. Borwein, On the Irrationality of Certain Series, Math. Proc. Cambridge Philos. Soc. 112, 141-146, 1992.
- Paul Erdős, On Arithmetical Properties of Lambert Series, J. Indian Math. Soc. 12, 63-66, 1948.
- Yoshihiro Tanaka, On the Sum of Reciprocals of Mersenne Primes, American Journal of Computational Mathematics, Vol. 7, No. 2 (2017), pp. 145-148.
- Eric Weisstein's World of Mathematics, Erdos-Borwein Constant.
- Marek Wolf, Computer experiments with Mersenne primes, arXiv preprint arXiv:1112.2412 [math.NT], 2011.
Crossrefs
Programs
-
Maple
Digits := 120 ; L := [ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917 ] ; x := 0 ; for i from 1 to 30 do x := x+1.0/(2^op(i,L)-1 ); end do ;
-
Mathematica
RealDigits[Sum[1/(2^p - 1), {p, MersennePrimeExponent[Range[14]]}], 10, 100][[1]] (* Amiram Eldar, May 24 2020 *)
-
PARI
isM(p)=my(m=Mod(4,2^p-1));for(i=1,p-2,m=m^2-2);!m s=1/3;forprime(p=3,default(realprecision)*log(10)\log(2), if(isM(p), s+=1./(2^p-1)));s \\ Charles R Greathouse IV, Mar 22 2012
Formula
Sum_{i>=1} 1/A000668(i).
Extensions
Entry revised by N. J. A. Sloane, Mar 10 2012
Comments