cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173945 a(n) = numerator of (Pi^2)/2 - Zeta(2,(2*n-1)/2), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 4, 40, 1036, 51664, 469876, 57251896, 9723595324, 1951933472, 565732015028, 204698374253288, 205082390523068, 108657935761675952, 13600159324521635284, 122539685111374820056, 103156660296672018389596
Offset: 1

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Crossrefs

For the denominators see A120268.

Programs

  • Magma
    [0] cat [Numerator((&+[4/(2*k+1)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    A173945 := n -> numer(add((k+1/2)^(-2), k=0..n-2)):
    seq(A173945(n), n=1..16); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[Pi^2/2 - Zeta[2, x/2]], {x, 1, 40, 2}] (* or *)
    a[n_] := Numerator[Sum[(k+1/2)^(-2), {k,0,n-2}]]; Table[a[n], {n,1,16}] (* Peter Luschny, Nov 14 2017 *)
  • PARI
    for(n=1,20, print1(numerator(sum(k=0,n-2, 4/(2*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of (Zeta(2, 1/2) - Zeta(2, n-1/2)), where Zeta is the Hurwitz Zeta function. - Peter Luschny, Nov 14 2017
a(n) = numerator of Sum_{k=0..(n-2)} 4/(2*k+1)^2. - G. C. Greubel, Aug 23 2018