A173955 a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4))/16 where Zeta(n, a) is the Hurwitz Zeta function.
0, 1, 58, 7459, 192404, 70791869, 37930481726, 3100675399831, 3000384410275816, 3016572632600497, 512004171837010018, 950047080453398607307, 2104850677799349861903388, 609822785846772474028096357, 611130542819711220012487366
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
Programs
-
Magma
[0] cat [Numerator((&+[1/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
-
Maple
r := n -> (Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4))/16: seq(numer(simplify(r(n))), n=1..15); # Peter Luschny, Nov 14 2017
-
Mathematica
Table[Numerator[FunctionExpand[(Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4])/16]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *) Numerator[Table[8*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *) Numerator[Table[Sum[1/(4*k + 3)^2, {k, 0, n-2}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)
-
PARI
for(n=1,20, print1(numerator(sum(k=0,n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
Formula
a(n) = numerator of r(n) with r(n) = (Pi^2 - 8*Catalan - Zeta(2, n - 1/4))/16, with the Hurwitz Zeta function Z(2, z), and the Catalan constant is given in A006752. With Zeta(2, 3/4) = Pi^2 - 8*Catalan this is the formula given in the name.
Numerator of Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. - G. C. Greubel, Aug 23 2018
Extensions
Numbers changed according to the old (or new) Mathematica program, and edited by Wolfdieter Lang, Nov 14 2017
Name simplified by Peter Luschny, Nov 14 2017
Comments